# -*- coding: utf-8 -*- from collections import OrderedDict, Iterable import functools import heapq import itertools import random import numpy as np from scipy import interpolate import scipy.spatial from sortedcontainers import SortedKeyList from adaptive.learner.base_learner import BaseLearner from adaptive.notebook_integration import ensure_holoviews, ensure_plotly from adaptive.learner.triangulation import ( Triangulation, point_in_simplex, circumsphere, simplex_volume_in_embedding, fast_det) from adaptive.utils import restore, cache_latest def volume(simplex, ys=None): # Notice the parameter ys is there so you can use this volume method as # as loss function matrix = np.subtract(simplex[:-1], simplex[-1], dtype=float) # See https://www.jstor.org/stable/2315353 dim = len(simplex) - 1 vol = np.abs(fast_det(matrix)) / np.math.factorial(dim) return vol def orientation(simplex): matrix = np.subtract(simplex[:-1], simplex[-1]) # See https://www.jstor.org/stable/2315353 sign, _logdet = np.linalg.slogdet(matrix) return sign def uniform_loss(simplex, ys=None): return volume(simplex) def std_loss(simplex, ys): r = np.linalg.norm(np.std(ys, axis=0)) vol = volume(simplex) dim = len(simplex) - 1 return r.flat * np.power(vol, 1. / dim) + vol def default_loss(simplex, ys): # return std_loss(simplex, ys) if isinstance(ys[0], Iterable): pts = [(*x, *y) for x, y in zip(simplex, ys)] else: pts = [(*x, y) for x, y in zip(simplex, ys)] return simplex_volume_in_embedding(pts) def choose_point_in_simplex(simplex, transform=None): """Choose a new point in inside a simplex. Pick the center of the simplex if the shape is nice (that is, the circumcenter lies within the simplex). Otherwise take the middle of the longest edge. Parameters ---------- simplex : numpy array The coordinates of a triangle with shape (N+1, N) transform : N*N matrix The multiplication to apply to the simplex before choosing the new point Returns ------- point : numpy array of length N The coordinates of the suggested new point. """ if transform is not None: simplex = np.dot(simplex, transform) # choose center if and only if the shape of the simplex is nice, # otherwise: the center the longest edge center, _radius = circumsphere(simplex) if point_in_simplex(center, simplex): point = np.average(simplex, axis=0) else: distances = scipy.spatial.distance.pdist(simplex) distance_matrix = scipy.spatial.distance.squareform(distances) i, j = np.unravel_index(np.argmax(distance_matrix), distance_matrix.shape) point = (simplex[i, :] + simplex[j, :]) / 2 if transform is not None: point = np.linalg.solve(transform, point) # undo the transform return point def _simplex_evaluation_priority(key): # We round the loss to 8 digits such that losses # are equal up to numerical precision will be considered # to be equal. This is needed because we want the learner # to behave in a deterministic fashion. loss, simplex, subsimplex = key return -round(loss, ndigits=8), simplex, subsimplex or (0,) class LearnerND(BaseLearner): """Learns and predicts a function 'f: ℝ^N → ℝ^M'. Parameters ---------- func: callable The function to learn. Must take a tuple of N real parameters and return a real number or an arraylike of length M. bounds : list of 2-tuples or `scipy.spatial.ConvexHull` A list ``[(a_1, b_1), (a_2, b_2), ..., (a_n, b_n)]`` containing bounds, one pair per dimension. Or a ConvexHull that defines the boundary of the domain. loss_per_simplex : callable, optional A function that returns the loss for a simplex. If not provided, then a default is used, which uses the deviation from a linear estimate, as well as triangle area, to determine the loss. Attributes ---------- data : dict Sampled points and values. points : numpy array Coordinates of the currently known points values : numpy array The values of each of the known points pending_points : set Points that still have to be evaluated. Notes ----- The sample points are chosen by estimating the point where the gradient is maximal. This is based on the currently known points. In practice, this sampling protocol results to sparser sampling of flat regions, and denser sampling of regions where the function has a high gradient, which is useful if the function is expensive to compute. This sampling procedure is not fast, so to benefit from it, your function needs to be slow enough to compute. This class keeps track of all known points. It triangulates these points and with every simplex it associates a loss. Then if you request points that you will compute in the future, it will subtriangulate a real simplex with the pending points inside it and distribute the loss among it's children based on volume. """ def __init__(self, func, bounds, loss_per_simplex=None): self._vdim = None self.loss_per_simplex = loss_per_simplex or default_loss self.data = OrderedDict() self.pending_points = set() if isinstance(bounds, scipy.spatial.ConvexHull): hull_points = bounds.points[bounds.vertices] self._bounds_points = sorted(list(map(tuple, hull_points))) self._bbox = tuple(zip(hull_points.min(axis=0), hull_points.max(axis=0))) self._interior = scipy.spatial.Delaunay(self._bounds_points) else: self._bounds_points = sorted(list(map(tuple, itertools.product(*bounds)))) self._bbox = tuple(tuple(map(float, b)) for b in bounds) self.ndim = len(self._bbox) self.function = func self._tri = None self._losses = dict() self._pending_to_simplex = dict() # vertex → simplex # triangulation of the pending points inside a specific simplex self._subtriangulations = dict() # simplex → triangulation # scale to unit hypercube # for the input self._transform = np.linalg.inv(np.diag(np.diff(self._bbox).flat)) # for the output self._min_value = None self._max_value = None self._output_multiplier = 1 # If we do not know anything, do not scale the values self._recompute_losses_factor = 1.1 # create a private random number generator with fixed seed self._random = random.Random(1) # all real triangles that have not been subdivided and the pending # triangles heap of tuples (-loss, real simplex, sub_simplex or None) # _simplex_queue is a heap of tuples (-loss, real_simplex, sub_simplex) # It contains all real and pending simplices except for real simplices # that have been subdivided. # _simplex_queue may contain simplices that have been deleted, this is # because deleting those items from the heap is an expensive operation, # so when popping an item, you should check that the simplex that has # been returned has not been deleted. This checking is done by # _pop_highest_existing_simplex self._simplex_queue = SortedKeyList(key=_simplex_evaluation_priority) @property def npoints(self): """Number of evaluated points.""" return len(self.data) @property def vdim(self): """Length of the output of ``learner.function``. If the output is unsized (when it's a scalar) then `vdim = 1`. As long as no data is known `vdim = 1`. """ if self._vdim is None and self.data: try: value = next(iter(self.data.values())) self._vdim = len(value) except TypeError: self._vdim = 1 return self._vdim if self._vdim is not None else 1 @property def bounds_are_done(self): return all(p in self.data for p in self._bounds_points) def _ip(self): """A `scipy.interpolate.LinearNDInterpolator` instance containing the learner's data.""" # XXX: take our own triangulation into account when generating the _ip return interpolate.LinearNDInterpolator(self.points, self.values) @property def tri(self): """An `adaptive.learner.triangulation.Triangulation` instance with all the points of the learner.""" if self._tri is not None: return self._tri try: self._tri = Triangulation(self.points) self._update_losses(set(), self._tri.simplices) return self._tri except ValueError: # A ValueError is raised if we do not have enough points or # the provided points are coplanar, so we need more points to # create a valid triangulation return None @property def values(self): """Get the values from `data` as a numpy array.""" return np.array(list(self.data.values()), dtype=float) @property def points(self): """Get the points from `data` as a numpy array.""" return np.array(list(self.data.keys()), dtype=float) def tell(self, point, value): point = tuple(point) if point in self.data: return # we already know about the point if value is None: return self.tell_pending(point) self.pending_points.discard(point) tri = self.tri self.data[point] = value if not self.inside_bounds(point): return self._update_range(value) if tri is not None: simplex = self._pending_to_simplex.get(point) if simplex is not None and not self._simplex_exists(simplex): simplex = None to_delete, to_add = tri.add_point( point, simplex, transform=self._transform) self._update_losses(to_delete, to_add) def _simplex_exists(self, simplex): simplex = tuple(sorted(simplex)) return simplex in self.tri.simplices def inside_bounds(self, point): """Check whether a point is inside the bounds.""" if hasattr(self, '_interior'): return self._interior.find_simplex(point, tol=1e-8) >= 0 else: eps = 1e-8 return all((mn - eps) <= p <= (mx + eps) for p, (mn, mx) in zip(point, self._bbox)) def tell_pending(self, point, *, simplex=None): point = tuple(point) if not self.inside_bounds(point): return self.pending_points.add(point) if self.tri is None: return simplex = tuple(simplex or self.tri.locate_point(point)) if not simplex: return # Simplex is None if pending point is outside the triangulation, # then you do not have subtriangles simplex = tuple(simplex) simplices = [self.tri.vertex_to_simplices[i] for i in simplex] neighbours = set.union(*simplices) # Neighbours also includes the simplex itself for simpl in neighbours: _, to_add = self._try_adding_pending_point_to_simplex(point, simpl) if to_add is None: continue self._update_subsimplex_losses(simpl, to_add) def _try_adding_pending_point_to_simplex(self, point, simplex): # try to insert it if not self.tri.point_in_simplex(point, simplex): return None, None if simplex not in self._subtriangulations: vertices = self.tri.get_vertices(simplex) self._subtriangulations[simplex] = Triangulation(vertices) self._pending_to_simplex[point] = simplex return self._subtriangulations[simplex].add_point(point) def _update_subsimplex_losses(self, simplex, new_subsimplices): loss = self._losses[simplex] loss_density = loss / self.tri.volume(simplex) subtriangulation = self._subtriangulations[simplex] for subsimplex in new_subsimplices: subloss = subtriangulation.volume(subsimplex) * loss_density self._simplex_queue.add((subloss, simplex, subsimplex)) def _ask_and_tell_pending(self, n=1): xs, losses = zip(*(self._ask() for _ in range(n))) return list(xs), list(losses) def ask(self, n, tell_pending=True): """Chose points for learners.""" if not tell_pending: with restore(self): return self._ask_and_tell_pending(n) else: return self._ask_and_tell_pending(n) def _ask_bound_point(self): # get the next bound point that is still available new_point = next(p for p in self._bounds_points if p not in self.data and p not in self.pending_points) self.tell_pending(new_point) return new_point, np.inf def _ask_point_without_known_simplices(self): assert not self._bounds_available # pick a random point inside the bounds # XXX: change this into picking a point based on volume loss a = np.diff(self._bbox).flat b = np.array(self._bbox)[:, 0] p = None while p is None or not self.inside_bounds(p): r = np.array([self._random.random() for _ in range(self.ndim)]) p = r * a + b p = tuple(p) self.tell_pending(p) return p, np.inf def _pop_highest_existing_simplex(self): # find the simplex with the highest loss, we do need to check that the # simplex hasn't been deleted yet while len(self._simplex_queue): loss, simplex, subsimplex = self._simplex_queue.pop(0) if (subsimplex is None and simplex in self.tri.simplices and simplex not in self._subtriangulations): return abs(loss), simplex, subsimplex if (simplex in self._subtriangulations and simplex in self.tri.simplices and subsimplex in self._subtriangulations[simplex].simplices): return abs(loss), simplex, subsimplex # Could not find a simplex, this code should never be reached assert self.tri is not None raise AssertionError( "Could not find a simplex to subdivide. Yet there should always" " be a simplex available if LearnerND.tri() is not None." ) def _ask_best_point(self): assert self.tri is not None loss, simplex, subsimplex = self._pop_highest_existing_simplex() if subsimplex is None: # We found a real simplex and want to subdivide it points = self.tri.get_vertices(simplex) else: # We found a pending simplex and want to subdivide it subtri = self._subtriangulations[simplex] points = subtri.get_vertices(subsimplex) point_new = tuple(choose_point_in_simplex(points, transform=self._transform)) self._pending_to_simplex[point_new] = simplex self.tell_pending(point_new, simplex=simplex) # O(??) return point_new, loss @property def _bounds_available(self): return any((p not in self.pending_points and p not in self.data) for p in self._bounds_points) def _ask(self): if self._bounds_available: return self._ask_bound_point() # O(1) if self.tri is None: # All bound points are pending or have been evaluated, but we do not # have enough evaluated points to construct a triangulation, so we # pick a random point return self._ask_point_without_known_simplices() # O(1) return self._ask_best_point() # O(log N) def _update_losses(self, to_delete: set, to_add: set): # XXX: add the points outside the triangulation to this as well pending_points_unbound = set() for simplex in to_delete: loss = self._losses.pop(simplex, None) subtri = self._subtriangulations.pop(simplex, None) if subtri is not None: pending_points_unbound.update(subtri.vertices) pending_points_unbound = set(p for p in pending_points_unbound if p not in self.data) for simplex in to_add: loss = self._compute_loss(simplex) self._losses[simplex] = loss for p in pending_points_unbound: self._try_adding_pending_point_to_simplex(p, simplex) if simplex not in self._subtriangulations: self._simplex_queue.add((loss, simplex, None)) continue self._update_subsimplex_losses( simplex, self._subtriangulations[simplex].simplices) def _compute_loss(self, simplex): # get the loss vertices = self.tri.get_vertices(simplex) values = [self.data[tuple(v)] for v in vertices] # scale them to a cube with sides 1 vertices = vertices @ self._transform values = self._output_multiplier * values # compute the loss on the scaled simplex return float(self.loss_per_simplex(vertices, values)) def _recompute_all_losses(self): """Recompute all losses and pending losses.""" # amortized O(N) complexity if self.tri is None: return # reset the _simplex_queue self._simplex_queue = SortedKeyList(key=_simplex_evaluation_priority) # recompute all losses for simplex in self.tri.simplices: loss = self._compute_loss(simplex) self._losses[simplex] = loss # now distribute it around the the children if they are present if simplex not in self._subtriangulations: self._simplex_queue.add((loss, simplex, None)) continue self._update_subsimplex_losses( simplex, self._subtriangulations[simplex].simplices) @property def _scale(self): # get the output scale return self._max_value - self._min_value def _update_range(self, new_output): if self._min_value is None or self._max_value is None: # this is the first point, nothing to do, just set the range self._min_value = np.array(new_output) self._max_value = np.array(new_output) self._old_scale = self._scale return False # if range in one or more directions is doubled, then update all losses self._min_value = np.minimum(self._min_value, new_output) self._max_value = np.maximum(self._max_value, new_output) scale_multiplier = 1 / self._scale if isinstance(scale_multiplier, float): scale_multiplier = np.array([scale_multiplier], dtype=float) # the maximum absolute value that is in the range. Because this is the # largest number, this also has the largest absolute numerical error. max_absolute_value_in_range = np.max(np.abs([self._min_value, self._max_value]), axis=0) # since a float has a relative error of 1e-15, the absolute error is the value * 1e-15 abs_err = 1e-15 * max_absolute_value_in_range # when scaling the floats, the error gets increased. scaled_err = abs_err * scale_multiplier allowed_numerical_error = 1e-2 # do not scale along the axis if the numerical error gets too big scale_multiplier[scaled_err > allowed_numerical_error] = 1 self._output_multiplier = scale_multiplier scale_factor = np.max(np.nan_to_num(self._scale / self._old_scale)) if scale_factor > self._recompute_losses_factor: self._old_scale = self._scale self._recompute_all_losses() return True return False @cache_latest def loss(self, real=True): # XXX: compute pending loss if real == False losses = self._losses if self.tri is not None else dict() return max(losses.values()) if losses else float('inf') def remove_unfinished(self): # XXX: implement this method self.pending_points = set() self._subtriangulations = dict() self._pending_to_simplex = dict() ########################## # Plotting related stuff # ########################## def plot(self, n=None, tri_alpha=0): """Plot the function we want to learn, only works in 2D. Parameters ---------- n : int the number of boxes in the interpolation grid along each axis tri_alpha : float (0 to 1) Opacity of triangulation lines """ hv = ensure_holoviews() if self.vdim > 1: raise NotImplementedError('holoviews currently does not support', '3D surface plots in bokeh.') if self.ndim != 2: raise NotImplementedError("Only 2D plots are implemented: You can " "plot a 2D slice with 'plot_slice'.") x, y = self._bbox lbrt = x[0], y[0], x[1], y[1] if len(self.data) >= 4: if n is None: # Calculate how many grid points are needed. # factor from A=√3/4 * a² (equilateral triangle) scale_factor = np.product(np.diag(self._transform)) a_sq = np.sqrt(np.min(self.tri.volumes()) * scale_factor) n = max(10, int(0.658 / a_sq)) xs = ys = np.linspace(0, 1, n) xs = xs * (x[1] - x[0]) + x[0] ys = ys * (y[1] - y[0]) + y[0] z = self._ip()(xs[:, None], ys[None, :]).squeeze() im = hv.Image(np.rot90(z), bounds=lbrt) if tri_alpha: points = np.array([self.tri.get_vertices(s) for s in self.tri.simplices]) points = np.pad(points[:, [0, 1, 2, 0], :], pad_width=((0, 0), (0, 1), (0, 0)), mode='constant', constant_values=np.nan).reshape(-1, 2) tris = hv.EdgePaths([points]) else: tris = hv.EdgePaths([]) else: im = hv.Image([], bounds=lbrt) tris = hv.EdgePaths([]) im_opts = dict(cmap='viridis') tri_opts = dict(line_width=0.5, alpha=tri_alpha) no_hover = dict(plot=dict(inspection_policy=None, tools=[])) return im.opts(style=im_opts) * tris.opts(style=tri_opts, **no_hover) def plot_slice(self, cut_mapping, n=None): """Plot a 1D or 2D interpolated slice of a N-dimensional function. Parameters ---------- cut_mapping : dict (int → float) for each fixed dimension the value, the other dimensions are interpolated. e.g. ``cut_mapping = {0: 1}``, so from dimension 0 ('x') to value 1. n : int the number of boxes in the interpolation grid along each axis """ hv = ensure_holoviews() plot_dim = self.ndim - len(cut_mapping) if plot_dim == 1: if not self.data: return hv.Scatter([]) * hv.Path([]) elif self.vdim > 1: raise NotImplementedError('multidimensional output not yet' ' supported by `plot_slice`') n = n or 201 values = [cut_mapping.get(i, np.linspace(*self._bbox[i], n)) for i in range(self.ndim)] ind = next(i for i in range(self.ndim) if i not in cut_mapping) x = values[ind] y = self._ip()(*values) p = hv.Path((x, y)) # Plot with 5% margins such that the boundary points are visible margin = 0.05 / self._transform[ind, ind] plot_bounds = (x.min() - margin, x.max() + margin) return p.redim(x=dict(range=plot_bounds)) elif plot_dim == 2: if self.vdim > 1: raise NotImplementedError('holoviews currently does not support' ' 3D surface plots in bokeh.') if n is None: # Calculate how many grid points are needed. # factor from A=√3/4 * a² (equilateral triangle) scale_factor = np.product(np.diag(self._transform)) a_sq = np.sqrt(np.min(self.tri.volumes()) * scale_factor) n = max(10, int(0.658 / a_sq)) xs = ys = np.linspace(0, 1, n) xys = [xs[:, None], ys[None, :]] values = [cut_mapping[i] if i in cut_mapping else xys.pop(0) * (b[1] - b[0]) + b[0] for i, b in enumerate(self._bbox)] lbrt = [b for i, b in enumerate(self._bbox) if i not in cut_mapping] lbrt = np.reshape(lbrt, (2, 2)).T.flatten().tolist() if len(self.data) >= 4: z = self._ip()(*values).squeeze() im = hv.Image(np.rot90(z), bounds=lbrt) else: im = hv.Image([], bounds=lbrt) return im.opts(style=dict(cmap='viridis')) else: raise ValueError("Only 1 or 2-dimensional plots can be generated.") def plot_3D(self, with_triangulation=False): """Plot the learner's data in 3D using plotly. Does *not* work with the `adaptive.notebook_integration.live_plot` functionality. Parameters ---------- with_triangulation : bool, default: False Add the verticices to the plot. Returns ------- plot : `plotly.offline.iplot` object The 3D plot of ``learner.data``. """ plotly = ensure_plotly() plots = [] vertices = self.tri.vertices if with_triangulation: Xe, Ye, Ze = [], [], [] for simplex in self.tri.simplices: for s in itertools.combinations(simplex, 2): Xe += [vertices[i][0] for i in s] + [None] Ye += [vertices[i][1] for i in s] + [None] Ze += [vertices[i][2] for i in s] + [None] plots.append(plotly.graph_objs.Scatter3d( x=Xe, y=Ye, z=Ze, mode='lines', line=dict(color='rgb(125,125,125)', width=1), hoverinfo='none' )) Xn, Yn, Zn = zip(*vertices) colors = [self.data[p] for p in self.tri.vertices] marker = dict(symbol='circle', size=3, color=colors, colorscale='Viridis', line=dict(color='rgb(50,50,50)', width=0.5)) plots.append(plotly.graph_objs.Scatter3d( x=Xn, y=Yn, z=Zn, mode='markers', name='actors', marker=marker, hoverinfo='text' )) axis = dict( showbackground=False, showline=False, zeroline=False, showgrid=False, showticklabels=False, title='', ) layout = plotly.graph_objs.Layout( showlegend=False, scene=dict(xaxis=axis, yaxis=axis, zaxis=axis), margin=dict(t=100), hovermode='closest') fig = plotly.graph_objs.Figure(data=plots, layout=layout) return plotly.offline.iplot(fig) def _get_data(self): return self.data def _set_data(self, data): self.tell_many(*zip(*data.items())) def _get_iso(self, level=0.0, which='surface'): if which == 'surface': if self.ndim != 3 or self.vdim != 1: raise Exception('Isosurface plotting is only supported' ' for a 3D input and 1D output') get_surface = True get_line = False elif which == 'line': if self.ndim != 2 or self.vdim != 1: raise Exception('Isoline plotting is only supported' ' for a 2D input and 1D output') get_surface = False get_line = True vertices = [] # index -> (x,y,z) faces_or_lines = [] # tuple of indices of the corner points @functools.lru_cache() def _get_vertex_index(a, b): vertex_a = self.tri.vertices[a] vertex_b = self.tri.vertices[b] value_a = self.data[vertex_a] value_b = self.data[vertex_b] da = abs(value_a - level) db = abs(value_b - level) dab = da + db new_pt = (db / dab * np.array(vertex_a) + da / dab * np.array(vertex_b)) new_index = len(vertices) vertices.append(new_pt) return new_index for simplex in self.tri.simplices: plane_or_line = [] for a, b in itertools.combinations(simplex, 2): va = self.data[self.tri.vertices[a]] vb = self.data[self.tri.vertices[b]] if min(va, vb) < level <= max(va, vb): vi = _get_vertex_index(a, b) should_add = True for pi in plane_or_line: if np.allclose(vertices[vi], vertices[pi]): should_add = False if should_add: plane_or_line.append(vi) if get_surface and len(plane_or_line) == 3: faces_or_lines.append(plane_or_line) elif get_surface and len(plane_or_line) == 4: faces_or_lines.append(plane_or_line[:3]) faces_or_lines.append(plane_or_line[1:]) elif get_line and len(plane_or_line) == 2: faces_or_lines.append(plane_or_line) if len(faces_or_lines) == 0: r_min = min(self.data[v] for v in self.tri.vertices) r_max = max(self.data[v] for v in self.tri.vertices) raise ValueError( f"Could not draw isosurface for level={level}, as" " this value is not inside the function range. Please choose" f" a level strictly inside interval ({r_min}, {r_max})" ) return vertices, faces_or_lines def plot_isoline(self, level=0.0, n=None, tri_alpha=0): """Plot the isoline at a specific level, only works in 2D. Parameters ---------- level : float, default: 0 The value of the function at which you would like to see the isoline. n : int The number of boxes in the interpolation grid along each axis. This is passed to `plot`. tri_alpha : float The opacity of the overlaying triangulation. This is passed to `plot`. Returns ------- `holoviews.core.Overlay` The plot of the isoline(s). This overlays a `plot` with a `holoviews.element.Path`. """ hv = ensure_holoviews() if n == -1: plot = hv.Path([]) else: plot = self.plot(n=n, tri_alpha=tri_alpha) if isinstance(level, Iterable): for l in level: plot = plot * self.plot_isoline(level=l, n=-1) return plot vertices, lines = self._get_iso(level, which='line') paths = [[vertices[i], vertices[j]] for i, j in lines] contour = hv.Path(paths) contour_opts = dict(color='black') contour = contour.opts(style=contour_opts) return plot * contour def plot_isosurface(self, level=0.0, hull_opacity=0.2): """Plots a linearly interpolated isosurface. This is the 3D analog of an isoline. Does *not* work with the `adaptive.notebook_integration.live_plot` functionality. Parameters ---------- level : float, default: 0.0 the function value which you are interested in. hull_opacity : float, default: 0.0 the opacity of the hull of the domain. Returns ------- plot : `plotly.offline.iplot` object The plot object of the isosurface. """ plotly = ensure_plotly() vertices, faces = self._get_iso(level, which='surface') x, y, z = zip(*vertices) fig = plotly.figure_factory.create_trisurf( x=x, y=y, z=z, plot_edges=False, simplices=faces, title="Isosurface") isosurface = fig.data[0] isosurface.update(lighting=dict(ambient=1, diffuse=1, roughness=1, specular=0, fresnel=0)) if hull_opacity < 1e-3: # Do not compute the hull_mesh. return plotly.offline.iplot(fig) hull_mesh = self._get_hull_mesh(opacity=hull_opacity) return plotly.offline.iplot([isosurface, hull_mesh]) def _get_hull_mesh(self, opacity=0.2): plotly = ensure_plotly() hull = scipy.spatial.ConvexHull(self._bounds_points) # Find the colors of each plane, giving triangles which are coplanar # the same color, such that a square face has the same color. color_dict = {} def _get_plane_color(simplex): simplex = tuple(simplex) # If the volume of the two triangles combined is zero then they # belong to the same plane. for simplex_key, color in color_dict.items(): points = [hull.points[i] for i in set(simplex_key + simplex)] points = np.array(points) if np.linalg.matrix_rank(points[1:] - points[0]) < 3: return color if scipy.spatial.ConvexHull(points).volume < 1e-5: return color color_dict[simplex] = tuple(random.randint(0, 255) for _ in range(3)) return color_dict[simplex] colors = [_get_plane_color(simplex) for simplex in hull.simplices] x, y, z = zip(*self._bounds_points) i, j, k = hull.simplices.T lighting = dict(ambient=1, diffuse=1, roughness=1, specular=0, fresnel=0) return plotly.graph_objs.Mesh3d(x=x, y=y, z=z, i=i, j=j, k=k, facecolor=colors, opacity=opacity, lighting=lighting)