import adaptive import holoviews import matplotlib.pyplot as plt import matplotlib.tri as mtri from PIL import Image, ImageDraw holoviews.notebook_extension('matplotlib') def create_and_run_learner(): def ring(xy): import numpy as np x, y = xy a = 0.2 return x + np.exp(-(x**2 + y**2 - 0.75**2)**2/a**4) learner = adaptive.Learner2D(ring, bounds=[(-1, 1), (-1, 1)]) adaptive.runner.simple(learner, goal=lambda l: l.loss() < 0.01) return learner def plot_learner_and_save(learner, fname): fig, ax = plt.subplots() tri = learner.ip().tri triang = mtri.Triangulation(*tri.points.T, triangles=tri.vertices) ax.triplot(triang, c='k', lw=0.8) ax.imshow(learner.plot().Image.I.data, extent=(-0.5, 0.5, -0.5, 0.5)) ax.set_xticks([]) ax.set_yticks([]) plt.savefig(fname, bbox_inches="tight", transparent=True, dpi=300, pad_inches=-0.1) def add_rounded_corners(fname, rad): im = Image.open(fname) circle = Image.new('L', (rad * 2, rad * 2), 0) draw = ImageDraw.Draw(circle) draw.ellipse((0, 0, rad * 2, rad * 2), fill=255) alpha = Image.new('L', im.size, 255) w, h = im.size alpha.paste(circle.crop((0, 0, rad, rad)), (0, 0)) alpha.paste(circle.crop((0, rad, rad, rad * 2)), (0, h - rad)) alpha.paste(circle.crop((rad, 0, rad * 2, rad)), (w - rad, 0)) alpha.paste(circle.crop((rad, rad, rad * 2, rad * 2)), (w - rad, h - rad)) im.putalpha(alpha) return im if __name__ == '__main__': learner = create_and_run_learner() fname = 'source/_static/logo_docs.png' plot_learner_and_save(learner, fname) im = add_rounded_corners(fname, rad=200) im.thumbnail((200, 200), Image.ANTIALIAS) # resize im.save(fname)