Browse code

remove unecessary 'verbose' parameters

pytest captures stdout, and only prints it if the test fails

Joseph Weston authored on 17/11/2017 12:16:59 • Bas Nijholt committed on 20/11/2017 15:49:57
Showing 1 changed files
... ...
@@ -16,16 +16,16 @@ def run_integrator_learner(f, a, b, tol, nr_points):
16 16
     return learner
17 17
 
18 18
 
19
-def same_ivals(f, a, b, tol, verbose=True):
19
+def same_ivals(f, a, b, tol):
20 20
         igral, err, nr_points, ivals = algorithm_4(f, a, b, tol)
21 21
 
22 22
         learner = run_integrator_learner(f, a, b, tol, nr_points)
23 23
 
24
-        if verbose:
25
-            print('igral difference', learner.igral-igral,
26
-                  'err difference', learner.err - err)
24
+        # This will only show up if the test fails, anyway
25
+        print('igral difference', learner.igral-igral,
26
+              'err difference', learner.err - err)
27 27
 
28
-        return learner.equal(ivals, verbose=verbose)
28
+        return learner.equal(ivals, verbose=True)
29 29
 
30 30
 
31 31
 def test_cquad():
... ...
@@ -33,27 +33,26 @@ def test_cquad():
33 33
                               [f7, 0, 1, 1e-6],
34 34
                               [f21, 0, 1, 1e-3],
35 35
                               [f24, 0, 3, 1e-3]]):
36
-        assert same_ivals(*args, verbose=True), 'Function {}'.format(i)
36
+        assert same_ivals(*args), 'Function {}'.format(i)
37 37
 
38 38
 
39 39
 @pytest.mark.xfail
40
-def test_machine_precision(verbose=True):
40
+def test_machine_precision():
41 41
     f, a, b, tol = [f63, 0, 1, 1e-10]
42 42
     igral, err, nr_points, ivals = algorithm_4(f, a, b, tol)
43 43
 
44 44
     learner = run_integrator_learner(f, a, b, tol, nr_points)
45 45
 
46
-    if verbose:
47
-        print('igral difference', learner.igral-igral,
48
-              'err difference', learner.err - err)
46
+    print('igral difference', learner.igral-igral,
47
+          'err difference', learner.err - err)
49 48
 
50
-    assert learner.equal(ivals, verbose=verbose)
49
+    assert learner.equal(ivals, verbose=True)
51 50
 
52 51
 
53 52
 def test_machine_precision2():
54 53
     f, a, b, tol = [f63, 0, 1, 1e-10]
55 54
     igral, err, nr_points, ivals = algorithm_4(f, a, b, tol)
56
-    
55
+
57 56
     learner = run_integrator_learner(f, a, b, tol, nr_points)
58 57
 
59 58
     np.testing.assert_almost_equal(igral, learner.igral)