... | ... |
@@ -145,7 +145,7 @@ class BalancingLearner(BaseLearner): |
145 | 145 |
learner.remove_unfinished() |
146 | 146 |
|
147 | 147 |
@classmethod |
148 |
- def from_combos(cls, f, learner_type, learner_kwargs, combos): |
|
148 |
+ def from_product(cls, f, learner_type, learner_kwargs, combos): |
|
149 | 149 |
"""Create a `BalancingLearner` with learners of all combinations of |
150 | 150 |
named variables’ values. |
151 | 151 |
|
... | ... |
@@ -176,7 +176,7 @@ class BalancingLearner(BaseLearner): |
176 | 176 |
... 'beta': np.linspace(0, 1, 5), |
177 | 177 |
... } |
178 | 178 |
|
179 |
- >>> learner = BalancingLearner.from_combos( |
|
179 |
+ >>> learner = BalancingLearner.from_product( |
|
180 | 180 |
... f, Learner1D, dict(bounds=(0, 1)), combos) |
181 | 181 |
|
182 | 182 |
Notes |
... | ... |
@@ -645,7 +645,7 @@ |
645 | 645 |
"cell_type": "markdown", |
646 | 646 |
"metadata": {}, |
647 | 647 |
"source": [ |
648 |
- "Often one wants to create a set of `learner`s for a cartesian product of parameters. For that particular case we've added a `classmethod` called `from_combos`. See how it works below" |
|
648 |
+ "Often one wants to create a set of `learner`s for a cartesian product of parameters. For that particular case we've added a `classmethod` called `from_product`. See how it works below" |
|
649 | 649 |
] |
650 | 650 |
}, |
651 | 651 |
{ |
... | ... |
@@ -664,7 +664,7 @@ |
664 | 664 |
" 'beta': np.linspace(0, 1, 5),\n", |
665 | 665 |
"}\n", |
666 | 666 |
"\n", |
667 |
- "learner = adaptive.BalancingLearner.from_combos(\n", |
|
667 |
+ "learner = adaptive.BalancingLearner.from_product(\n", |
|
668 | 668 |
" jacobi, adaptive.Learner1D, dict(bounds=(0, 1)), combos)\n", |
669 | 669 |
"\n", |
670 | 670 |
"runner = adaptive.BlockingRunner(learner, goal=lambda l: l.loss() < 0.01)\n", |