Browse code

small changes to the notebook and use SequentialExecutor

Bas Nijholt authored on 30/10/2017 17:40:47
Showing 1 changed files
... ...
@@ -175,11 +175,12 @@
175 175
    "metadata": {},
176 176
    "outputs": [],
177 177
    "source": [
178
-    "def func(xy):\n",
178
+    "def func(xy, wait=True):\n",
179 179
     "    import numpy as np\n",
180 180
     "    from time import sleep\n",
181 181
     "    from random import random\n",
182
-    "    sleep(random())\n",
182
+    "    if wait:\n",
183
+    "        sleep(random())\n",
183 184
     "    x, y = xy\n",
184 185
     "    a = 0.2\n",
185 186
     "    return x + np.exp(-(x**2 + y**2 - 0.75**2)**2/a**4)\n",
... ...
@@ -204,7 +205,7 @@
204 205
    "source": [
205 206
     "%%output size=100\n",
206 207
     "%%opts Contours (alpha=0.3)\n",
207
-    "from adaptive.learner import *\n",
208
+    "import holoviews as hv\n",
208 209
     "\n",
209 210
     "def plot(learner):\n",
210 211
     "    tri = learner.ip().tri\n",
... ...
@@ -230,7 +231,7 @@
230 231
     "learner2 = adaptive.learner.Learner2D(func, bounds=[(-1, 1), (-1, 1)])\n",
231 232
     "lin = np.linspace(-1, 1, len(learner.points)**0.5)\n",
232 233
     "xy = [(x, y) for x in lin for y in lin]\n",
233
-    "learner2.add_data(xy, map(func, xy))\n",
234
+    "learner2.add_data(xy, map(partial(func, wait=False), xy))\n",
234 235
     "learner2.plot().relabel('Homogeneous grid') + learner.plot().relabel('With adaptive')"
235 236
    ]
236 237
   },
... ...
@@ -275,7 +276,7 @@
275 276
    "metadata": {},
276 277
    "outputs": [],
277 278
    "source": [
278
-    "learner = adaptive.AverageLearner(g, None, 0.01)\n",
279
+    "learner = adaptive.learner.AverageLearner(g, None, 0.01)\n",
279 280
     "runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 1)\n",
280 281
     "adaptive.live_plot(runner)"
281 282
    ]
... ...
@@ -342,9 +343,8 @@
342 343
    "metadata": {},
343 344
    "outputs": [],
344 345
    "source": [
345
-    "from cquad import Learner\n",
346
-    "learner = Learner(f24, bounds=(0, 3), tol=1e-3)\n",
347
-    "runner = adaptive.Runner(learner, goal=lambda l: l.done())"
346
+    "learner = adaptive.learner.IntegratorLearner(f24, bounds=(0, 3), tol=1e-10)\n",
347
+    "runner = adaptive.Runner(learner, executor=adaptive.runner.SequentialExecutor(), goal=lambda l: l.done())"
348 348
    ]
349 349
   },
350 350
   {