implement benchmarks with asv
See merge request qt/adaptive!24
5 | 6 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,44 @@ |
1 |
+# adaptive benchmarks |
|
2 |
+ |
|
3 |
+Benchmarking adaptive with Airspeed Velocity. |
|
4 |
+ |
|
5 |
+## Usage |
|
6 |
+ |
|
7 |
+Airspeed Velocity manages building and Python conda environments by itself, |
|
8 |
+unless told otherwise. To run the benchmarks, you do not need to install a |
|
9 |
+development version of adaptive to your current Python environment. |
|
10 |
+ |
|
11 |
+Run ASV commands (record results and generate HTML): |
|
12 |
+ |
|
13 |
+```bash |
|
14 |
+cd benchmarks |
|
15 |
+asv run --skip-existing-commits --steps 10 ALL |
|
16 |
+asv publish |
|
17 |
+asv preview |
|
18 |
+``` |
|
19 |
+ |
|
20 |
+More on how to use ``asv`` can be found in `ASV documentation`_ |
|
21 |
+Command-line help is available as usual via ``asv --help`` and |
|
22 |
+``asv run --help``. |
|
23 |
+ |
|
24 |
+ |
|
25 |
+## Writing benchmarks |
|
26 |
+ |
|
27 |
+See [`ASV documentation`](https://asv.readthedocs.io/) for basics on how to write benchmarks. |
|
28 |
+ |
|
29 |
+Some things to consider: |
|
30 |
+ |
|
31 |
+- The benchmark suite should be importable with any adaptive version. |
|
32 |
+ |
|
33 |
+- The benchmark parameters etc. should not depend on which adaptive version |
|
34 |
+ is installed. |
|
35 |
+ |
|
36 |
+- Try to keep the runtime of the benchmark reasonable. |
|
37 |
+ |
|
38 |
+- Prefer ASV's ``time_`` methods for benchmarking times rather than cooking up |
|
39 |
+ time measurements via ``time.clock``, even if it requires some juggling when |
|
40 |
+ writing the benchmark. |
|
41 |
+ |
|
42 |
+- Preparing arrays etc. should generally be put in the ``setup`` method rather |
|
43 |
+ than the ``time_`` methods, to avoid counting preparation time together with |
|
44 |
+ the time of the benchmarked operation. |
0 | 45 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,25 @@ |
1 |
+{ |
|
2 |
+ "version": 1, |
|
3 |
+ "project": "adaptive", |
|
4 |
+ "project_url": "https://gitlab.kwant-project.org/qt/adaptive", |
|
5 |
+ "repo": "..", |
|
6 |
+ "dvcs": "git", |
|
7 |
+ "environment_type": "conda", |
|
8 |
+ "install_timeout": 600, |
|
9 |
+ "show_commit_url": "https://gitlab.kwant-project.org/qt/adaptive/commit/", |
|
10 |
+ "pythons": ["3.6"], |
|
11 |
+ "conda_channels": ["conda-forge"], |
|
12 |
+ "matrix": { |
|
13 |
+ "numpy": ["1.13"], |
|
14 |
+ "holoviews": ["1.9.1"], |
|
15 |
+ "scipy": ["0.19.1"], |
|
16 |
+ "ipyparallel": ["6.0.2"], |
|
17 |
+ "sortedcontainers": ["1.5.7"], |
|
18 |
+ }, |
|
19 |
+ "benchmark_dir": "benchmarks", |
|
20 |
+ "env_dir": "env", |
|
21 |
+ "results_dir": "results", |
|
22 |
+ "html_dir": "html", |
|
23 |
+ "hash_length": 8, |
|
24 |
+ "wheel_cache_size": 2 |
|
25 |
+} |
0 | 2 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,47 @@ |
1 |
+import adaptive |
|
2 |
+ |
|
3 |
+import numpy as np |
|
4 |
+import random |
|
5 |
+ |
|
6 |
+ |
|
7 |
+offset = random.uniform(-0.5, 0.5) |
|
8 |
+ |
|
9 |
+def f_1d(x, offset=offset): |
|
10 |
+ a = 0.01 |
|
11 |
+ return x + a**2 / (a**2 + (x - offset)**2) |
|
12 |
+ |
|
13 |
+ |
|
14 |
+def f_2d(xy): |
|
15 |
+ x, y = xy |
|
16 |
+ a = 0.2 |
|
17 |
+ return x + np.exp(-(x**2 + y**2 - 0.75**2)**2/a**4) |
|
18 |
+ |
|
19 |
+ |
|
20 |
+class TimeLearner1D: |
|
21 |
+ def setup(self): |
|
22 |
+ self.learner = adaptive.Learner1D(f_1d, bounds=(-1, 1)) |
|
23 |
+ |
|
24 |
+ def time_run(self): |
|
25 |
+ for _ in range(1000): |
|
26 |
+ points, _ = self.learner.choose_points(1) |
|
27 |
+ self.learner.add_data(points, map(f_1d, points)) |
|
28 |
+ |
|
29 |
+ |
|
30 |
+class TimeLearner2D: |
|
31 |
+ def setup(self): |
|
32 |
+ self.learner = adaptive.Learner2D(f_2d, bounds=[(-1, 1), (-1, 1)]) |
|
33 |
+ self.xs = np.random.rand(50**2, 2) |
|
34 |
+ self.ys = np.random.rand(50**2) |
|
35 |
+ |
|
36 |
+ def time_run(self): |
|
37 |
+ for _ in range(50**2): |
|
38 |
+ points, _ = self.learner.choose_points(1) |
|
39 |
+ self.learner.add_data(points, map(f_2d, points)) |
|
40 |
+ |
|
41 |
+ def time_choose_points(self): |
|
42 |
+ for _ in range(50**2): |
|
43 |
+ self.learner.choose_points(1) |
|
44 |
+ |
|
45 |
+ def time_add_point(self): |
|
46 |
+ for x, y in zip(self.xs, self.ys): |
|
47 |
+ self.learner.add_point(x, y) |