Browse code

small style changes

Bas Nijholt authored on 11/07/2018 02:43:45
Showing 1 changed files
... ...
@@ -125,10 +125,7 @@ class Learner1D(BaseLearner):
125 125
 
126 126
     def loss(self, real=True):
127 127
         losses = self.losses if real else self.losses_combined
128
-        if len(losses) == 0:
129
-            return float('inf')
130
-        else:
131
-            return max(losses.values())
128
+        return max(losses.values()) if len(losses) > 0 else float('inf')
132 129
 
133 130
     def update_interpolated_loss_in_interval(self, x_left, x_right):
134 131
         if x_left is not None and x_right is not None:
... ...
@@ -176,7 +173,7 @@ class Learner1D(BaseLearner):
176 173
         if x in neighbors:
177 174
             return neighbors[x]
178 175
         pos = neighbors.bisect_left(x)
179
-        x_left = neighbors.iloc[pos-1] if pos != 0 else None
176
+        x_left = neighbors.iloc[pos - 1] if pos != 0 else None
180 177
         x_right = neighbors.iloc[pos] if pos != len(neighbors) else None
181 178
         return x_left, x_right
182 179
 
... ...
@@ -264,10 +261,8 @@ class Learner1D(BaseLearner):
264 261
             return [], []
265 262
 
266 263
         # If the bounds have not been chosen yet, we choose them first.
267
-        points = []
268
-        for bound in self.bounds:
269
-            if bound not in self.data and bound not in self.pending_points:
270
-                points.append(bound)
264
+        points = [b for b in self.bounds if b not in self.data
265
+                  and b not in self.pending_points]
271 266
 
272 267
         if len(points) == 2:
273 268
             # First time
... ...
@@ -288,12 +283,10 @@ class Learner1D(BaseLearner):
288 283
 
289 284
             # Calculate how many points belong to each interval.
290 285
             x_scale = self._scale[0]
291
-
292 286
             quals = []
293
-            for ((x_left, x_right), loss) in self.losses_combined.items():
294
-                quality = -loss if not math.isinf(loss) else -(x_right - x_left) / x_scale
295
-                quals.append((quality, (x_left, x_right), 1))
296
-
287
+            for x, loss in self.losses_combined.items():
288
+                quality = -loss if not math.isinf(loss) else -(x[1] - x[0]) / x_scale
289
+                quals.append((quality, x, 1))
297 290
             heapq.heapify(quals)
298 291
 
299 292
             for point_number in range(n):