Browse code

use runner.live_plot() instead of adaptive.live_plot(runner) in the notebook

Bas Nijholt authored on 16/02/2018 15:47:52 • Joseph Weston committed on 16/02/2018 16:48:29
Showing 1 changed files
... ...
@@ -123,7 +123,7 @@
123 123
    "metadata": {},
124 124
    "outputs": [],
125 125
    "source": [
126
-    "adaptive.live_plot(runner)"
126
+    "runner.live_plot()"
127 127
    ]
128 128
   },
129 129
   {
... ...
@@ -196,7 +196,8 @@
196 196
    "metadata": {},
197 197
    "outputs": [],
198 198
    "source": [
199
-    "runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 0.01)"
199
+    "runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 0.01)\n",
200
+    "runner.live_info()"
200 201
    ]
201 202
   },
202 203
   {
... ...
@@ -211,7 +212,7 @@
211 212
     "    opts = dict(plot=dict(title_format=title))\n",
212 213
     "    return plot.Image + plot.EdgePaths.I.clone().opts(**opts) + plot\n",
213 214
     "\n",
214
-    "adaptive.live_plot(runner, plotter=plot, update_interval=1)"
215
+    "runner.live_plot(plotter=plot, update_interval=0.2)"
215 216
    ]
216 217
   },
217 218
   {
... ...
@@ -272,7 +273,16 @@
272 273
    "source": [
273 274
     "learner = adaptive.AverageLearner(g, atol=None, rtol=0.01)\n",
274 275
     "runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 1)\n",
275
-    "adaptive.live_plot(runner)"
276
+    "runner.live_info()"
277
+   ]
278
+  },
279
+  {
280
+   "cell_type": "code",
281
+   "execution_count": null,
282
+   "metadata": {},
283
+   "outputs": [],
284
+   "source": [
285
+    "runner.live_plot()"
276 286
    ]
277 287
   },
278 288
   {
... ...
@@ -336,7 +346,8 @@
336 346
    "source": [
337 347
     "from adaptive.runner import SequentialExecutor\n",
338 348
     "learner = adaptive.IntegratorLearner(f24, bounds=(0, 3), tol=1e-10)\n",
339
-    "runner = adaptive.Runner(learner, executor=SequentialExecutor(), goal=lambda l: l.done())"
349
+    "runner = adaptive.Runner(learner, executor=SequentialExecutor(), goal=lambda l: l.done())\n",
350
+    "runner.live_info()"
340 351
    ]
341 352
   },
342 353
   {
... ...
@@ -410,7 +421,7 @@
410 421
     "from adaptive.runner import SequentialExecutor\n",
411 422
     "\n",
412 423
     "learner = adaptive.Learner1D(f_levels, bounds=(-1, 1))\n",
413
-    "runner = adaptive.Runner(learner, SequentialExecutor(), goal=lambda l: l.loss() < 0.05)"
424
+    "runner = adaptive.Runner(learner, executor=SequentialExecutor(), goal=lambda l: l.loss() < 0.05)"
414 425
    ]
415 426
   },
416 427
   {
... ...
@@ -426,7 +437,7 @@
426 437
    "metadata": {},
427 438
    "outputs": [],
428 439
    "source": [
429
-    "adaptive.live_plot(runner)"
440
+    "runner.live_plot()"
430 441
    ]
431 442
   },
432 443
   {
... ...
@@ -469,7 +480,7 @@
469 480
    "outputs": [],
470 481
    "source": [
471 482
     "plotter = lambda learner: hv.Overlay([L.plot() for L in learner.learners])\n",
472
-    "adaptive.live_plot(runner, plotter=plotter)"
483
+    "runner.live_plot(plotter=plotter)"
473 484
    ]
474 485
   },
475 486
   {
... ...
@@ -547,7 +558,7 @@
547 558
    "outputs": [],
548 559
    "source": [
549 560
     "learner.plot = _learner.plot\n",
550
-    "adaptive.live_plot(runner)"
561
+    "runner.live_plot()"
551 562
    ]
552 563
   },
553 564
   {
... ...
@@ -608,7 +619,7 @@
608 619
     "\n",
609 620
     "learner = adaptive.Learner1D(f, bounds=(-1, 1))\n",
610 621
     "runner = adaptive.Runner(learner, executor=executor, goal=lambda l: l.loss() < 0.1)\n",
611
-    "adaptive.live_plot(runner)"
622
+    "runner.live_plot()"
612 623
    ]
613 624
   },
614 625
   {
... ...
@@ -632,7 +643,7 @@
632 643
     "\n",
633 644
     "learner = adaptive.Learner1D(f, bounds=(-1, 1))\n",
634 645
     "runner = adaptive.Runner(learner, executor=client, goal=lambda l: l.loss() < 0.1)\n",
635
-    "adaptive.live_plot(runner)"
646
+    "runner.live_plot()"
636 647
    ]
637 648
   },
638 649
   {
... ...
@@ -673,7 +684,7 @@
673 684
    "source": [
674 685
     "learner = adaptive.Learner1D(f, bounds=(-1, 1))\n",
675 686
     "runner = adaptive.Runner(learner)\n",
676
-    "adaptive.live_plot(runner)"
687
+    "runner.live_plot()"
677 688
    ]
678 689
   },
679 690
   {
... ...
@@ -718,7 +729,7 @@
718 729
     "    \n",
719 730
     "learner = adaptive.Learner1D(will_raise, (-1, 1))\n",
720 731
     "runner = adaptive.Runner(learner)  # without 'goal' the runner will run forever unless cancelled\n",
721
-    "adaptive.live_plot(runner)"
732
+    "runner.live_plot()"
722 733
    ]
723 734
   },
724 735
   {
... ...
@@ -778,7 +789,7 @@
778 789
     "learner = adaptive.Learner1D(f, bounds=(-1, 1))\n",
779 790
     "runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 0.1,\n",
780 791
     "                         log=True)\n",
781
-    "adaptive.live_plot(runner)"
792
+    "runner.live_plot()"
782 793
    ]
783 794
   },
784 795
   {