cquad
Closes #5
See merge request qt/adaptive!8
1 | 1 |
deleted file mode 100644 |
... | ... |
@@ -1,774 +0,0 @@ |
1 |
-# -*- coding: utf-8 -*- |
|
2 |
-import abc |
|
3 |
-from contextlib import contextmanager |
|
4 |
-from copy import deepcopy as copy |
|
5 |
-import functools |
|
6 |
-import heapq |
|
7 |
-import itertools |
|
8 |
-from math import sqrt, hypot |
|
9 |
-from operator import itemgetter |
|
10 |
- |
|
11 |
-import holoviews as hv |
|
12 |
-import numpy as np |
|
13 |
-from scipy import interpolate, optimize, special |
|
14 |
-import sortedcontainers |
|
15 |
- |
|
16 |
- |
|
17 |
-class BaseLearner(metaclass=abc.ABCMeta): |
|
18 |
- """Base class for algorithms for learning a function 'f: X → Y'. |
|
19 |
- |
|
20 |
- Attributes |
|
21 |
- ---------- |
|
22 |
- function : callable: X → Y |
|
23 |
- The function to learn. |
|
24 |
- data : dict: X → Y |
|
25 |
- 'function' evaluated at certain points. |
|
26 |
- The values can be 'None', which indicates that the point |
|
27 |
- will be evaluated, but that we do not have the result yet. |
|
28 |
- |
|
29 |
- Subclasses may define a 'plot' method that takes no parameters |
|
30 |
- and returns a holoviews plot. |
|
31 |
- """ |
|
32 |
- |
|
33 |
- def add_data(self, xvalues, yvalues): |
|
34 |
- """Add data to the learner. |
|
35 |
- |
|
36 |
- Parameters |
|
37 |
- ---------- |
|
38 |
- xvalues : value from the function domain, or iterable of such |
|
39 |
- Values from the domain of the learned function. |
|
40 |
- yvalues : value from the function image, or iterable of such |
|
41 |
- Values from the range of the learned function, or None. |
|
42 |
- If 'None', then it indicates that the value has not yet |
|
43 |
- been computed. |
|
44 |
- """ |
|
45 |
- try: |
|
46 |
- for x, y in zip(xvalues, yvalues): |
|
47 |
- self.add_point(x, y) |
|
48 |
- except TypeError: |
|
49 |
- self.add_point(xvalues, yvalues) |
|
50 |
- |
|
51 |
- @abc.abstractmethod |
|
52 |
- def add_point(self, x, y): |
|
53 |
- """Add a single datapoint to the learner.""" |
|
54 |
- pass |
|
55 |
- |
|
56 |
- @abc.abstractmethod |
|
57 |
- def remove_unfinished(self): |
|
58 |
- """Remove uncomputed data from the learner.""" |
|
59 |
- pass |
|
60 |
- |
|
61 |
- @abc.abstractmethod |
|
62 |
- def loss(self, real=True): |
|
63 |
- """Return the loss for the current state of the learner. |
|
64 |
- |
|
65 |
- Parameters |
|
66 |
- ---------- |
|
67 |
- real : bool, default: True |
|
68 |
- If False, return the "expected" loss, i.e. the |
|
69 |
- loss including the as-yet unevaluated points |
|
70 |
- (possibly by interpolation). |
|
71 |
- """ |
|
72 |
- |
|
73 |
- @abc.abstractmethod |
|
74 |
- def choose_points(self, n, add_data=True): |
|
75 |
- """Choose the next 'n' points to evaluate. |
|
76 |
- |
|
77 |
- Parameters |
|
78 |
- ---------- |
|
79 |
- n : int |
|
80 |
- The number of points to choose. |
|
81 |
- add_data : bool, default: True |
|
82 |
- If True, add the chosen points to this |
|
83 |
- learner's 'data' with 'None' for the 'y' |
|
84 |
- values. Set this to False if you do not |
|
85 |
- want to modify the state of the learner. |
|
86 |
- """ |
|
87 |
- pass |
|
88 |
- |
|
89 |
- def __getstate__(self): |
|
90 |
- return copy(self.__dict__) |
|
91 |
- |
|
92 |
- def __setstate__(self, state): |
|
93 |
- self.__dict__ = state |
|
94 |
- |
|
95 |
- |
|
96 |
-class AverageLearner(BaseLearner): |
|
97 |
- """A naive implementation of adaptive computing of averages. |
|
98 |
- |
|
99 |
- The learned function must depend on an integer input variable that |
|
100 |
- represents the source of randomness. |
|
101 |
- |
|
102 |
- Parameters: |
|
103 |
- ----------- |
|
104 |
- atol : float |
|
105 |
- Desired absolute tolerance |
|
106 |
- rtol : float |
|
107 |
- Desired relative tolerance |
|
108 |
- """ |
|
109 |
- |
|
110 |
- def __init__(self, function, atol=None, rtol=None): |
|
111 |
- if atol is None and rtol is None: |
|
112 |
- raise Exception('At least one of `atol` and `rtol` should be set.') |
|
113 |
- if atol is None: |
|
114 |
- atol = np.inf |
|
115 |
- if rtol is None: |
|
116 |
- rtol = np.inf |
|
117 |
- |
|
118 |
- self.data = {} |
|
119 |
- self.function = function |
|
120 |
- self.atol = atol |
|
121 |
- self.rtol = rtol |
|
122 |
- self.n = 0 |
|
123 |
- self.n_requested = 0 |
|
124 |
- self.sum_f = 0 |
|
125 |
- self.sum_f_sq = 0 |
|
126 |
- |
|
127 |
- def choose_points(self, n, add_data=True): |
|
128 |
- points = list(range(self.n_requested, self.n_requested + n)) |
|
129 |
- loss_improvements = [self.loss()] * n |
|
130 |
- if add_data: |
|
131 |
- self.add_data(points, itertools.repeat(None)) |
|
132 |
- return points, loss_improvements |
|
133 |
- |
|
134 |
- def add_point(self, n, value): |
|
135 |
- self.data[n] = value |
|
136 |
- if value is None: |
|
137 |
- self.n_requested += 1 |
|
138 |
- return |
|
139 |
- else: |
|
140 |
- self.n += 1 |
|
141 |
- self.sum_f += value |
|
142 |
- self.sum_f_sq += value**2 |
|
143 |
- |
|
144 |
- @property |
|
145 |
- def mean(self): |
|
146 |
- return self.sum_f / self.n |
|
147 |
- |
|
148 |
- @property |
|
149 |
- def std(self): |
|
150 |
- n = self.n |
|
151 |
- if n < 2: |
|
152 |
- return np.inf |
|
153 |
- return sqrt((self.sum_f_sq - n * self.mean**2) / (n - 1)) |
|
154 |
- |
|
155 |
- def loss(self, real=True): |
|
156 |
- n = self.n |
|
157 |
- if n < 2: |
|
158 |
- return np.inf |
|
159 |
- standard_error = self.std / sqrt(n if real else self.n_requested) |
|
160 |
- return max(standard_error / self.atol, |
|
161 |
- standard_error / abs(self.mean) / self.rtol) |
|
162 |
- |
|
163 |
- def remove_unfinished(self): |
|
164 |
- """Remove uncomputed data from the learner.""" |
|
165 |
- pass |
|
166 |
- |
|
167 |
- def plot(self): |
|
168 |
- vals = [v for v in self.data.values() if v is not None] |
|
169 |
- if not vals: |
|
170 |
- return hv.Histogram([[], []]) |
|
171 |
- num_bins = int(max(5, sqrt(self.n))) |
|
172 |
- vals = hv.Points(vals) |
|
173 |
- return hv.operation.histogram(vals, num_bins=num_bins, dimension=1) |
|
174 |
- |
|
175 |
- |
|
176 |
-class Learner1D(BaseLearner): |
|
177 |
- """Learns and predicts a function 'f:ℝ → ℝ'. |
|
178 |
- |
|
179 |
- Parameters |
|
180 |
- ---------- |
|
181 |
- function : callable |
|
182 |
- The function to learn. Must take a single real parameter and |
|
183 |
- return a real number. |
|
184 |
- bounds : pair of reals |
|
185 |
- The bounds of the interval on which to learn 'function'. |
|
186 |
- """ |
|
187 |
- |
|
188 |
- def __init__(self, function, bounds): |
|
189 |
- self.function = function |
|
190 |
- |
|
191 |
- # A dict storing the loss function for each interval x_n. |
|
192 |
- self.losses = {} |
|
193 |
- self.losses_combined = {} |
|
194 |
- |
|
195 |
- self.data = sortedcontainers.SortedDict() |
|
196 |
- self.data_interp = {} |
|
197 |
- |
|
198 |
- # A dict {x_n: [x_{n-1}, x_{n+1}]} for quick checking of local |
|
199 |
- # properties. |
|
200 |
- self.neighbors = sortedcontainers.SortedDict() |
|
201 |
- self.neighbors_combined = sortedcontainers.SortedDict() |
|
202 |
- |
|
203 |
- # Bounding box [[minx, maxx], [miny, maxy]]. |
|
204 |
- self._bbox = [list(bounds), [np.inf, -np.inf]] |
|
205 |
- |
|
206 |
- # Data scale (maxx - minx), (maxy - miny) |
|
207 |
- self._scale = [bounds[1] - bounds[0], 0] |
|
208 |
- self._oldscale = copy(self._scale) |
|
209 |
- |
|
210 |
- self.bounds = list(bounds) |
|
211 |
- |
|
212 |
- @property |
|
213 |
- def data_combined(self): |
|
214 |
- return {**self.data, **self.data_interp} |
|
215 |
- |
|
216 |
- def interval_loss(self, x_left, x_right, data): |
|
217 |
- """Calculate loss in the interval x_left, x_right. |
|
218 |
- |
|
219 |
- Currently returns the rescaled length of the interval. If one of the |
|
220 |
- y-values is missing, returns 0 (so the intervals with missing data are |
|
221 |
- never touched. This behavior should be improved later. |
|
222 |
- """ |
|
223 |
- y_right, y_left = data[x_right], data[x_left] |
|
224 |
- if self._scale[1] == 0: |
|
225 |
- return sqrt(((x_right - x_left) / self._scale[0])**2) |
|
226 |
- else: |
|
227 |
- return sqrt(((x_right - x_left) / self._scale[0])**2 + |
|
228 |
- ((y_right - y_left) / self._scale[1])**2) |
|
229 |
- |
|
230 |
- def loss(self, real=True): |
|
231 |
- losses = self.losses if real else self.losses_combined |
|
232 |
- if len(losses) == 0: |
|
233 |
- return float('inf') |
|
234 |
- else: |
|
235 |
- return max(losses.values()) |
|
236 |
- |
|
237 |
- def update_losses(self, x, data, neighbors, losses): |
|
238 |
- x_lower, x_upper = neighbors[x] |
|
239 |
- if x_lower is not None: |
|
240 |
- losses[x_lower, x] = self.interval_loss(x_lower, x, data) |
|
241 |
- if x_upper is not None: |
|
242 |
- losses[x, x_upper] = self.interval_loss(x, x_upper, data) |
|
243 |
- try: |
|
244 |
- del losses[x_lower, x_upper] |
|
245 |
- except KeyError: |
|
246 |
- pass |
|
247 |
- |
|
248 |
- def find_neighbors(self, x, neighbors): |
|
249 |
- pos = neighbors.bisect_left(x) |
|
250 |
- x_lower = neighbors.iloc[pos-1] if pos != 0 else None |
|
251 |
- x_upper = neighbors.iloc[pos] if pos != len(neighbors) else None |
|
252 |
- return x_lower, x_upper |
|
253 |
- |
|
254 |
- def update_neighbors(self, x, neighbors): |
|
255 |
- if x not in neighbors: # The point is new |
|
256 |
- x_lower, x_upper = self.find_neighbors(x, neighbors) |
|
257 |
- neighbors[x] = [x_lower, x_upper] |
|
258 |
- neighbors.get(x_lower, [None, None])[1] = x |
|
259 |
- neighbors.get(x_upper, [None, None])[0] = x |
|
260 |
- |
|
261 |
- def update_scale(self, x, y): |
|
262 |
- self._bbox[0][0] = min(self._bbox[0][0], x) |
|
263 |
- self._bbox[0][1] = max(self._bbox[0][1], x) |
|
264 |
- if y is not None: |
|
265 |
- self._bbox[1][0] = min(self._bbox[1][0], y) |
|
266 |
- self._bbox[1][1] = max(self._bbox[1][1], y) |
|
267 |
- |
|
268 |
- self._scale = [self._bbox[0][1] - self._bbox[0][0], |
|
269 |
- self._bbox[1][1] - self._bbox[1][0]] |
|
270 |
- |
|
271 |
- def add_point(self, x, y): |
|
272 |
- real = y is not None |
|
273 |
- |
|
274 |
- if real: |
|
275 |
- # Add point to the real data dict and pop from the unfinished |
|
276 |
- # data_interp dict. |
|
277 |
- self.data[x] = y |
|
278 |
- try: |
|
279 |
- del self.data_interp[x] |
|
280 |
- except KeyError: |
|
281 |
- pass |
|
282 |
- else: |
|
283 |
- # The keys of data_interp are the unknown points |
|
284 |
- self.data_interp[x] = None |
|
285 |
- |
|
286 |
- # Update the neighbors |
|
287 |
- self.update_neighbors(x, self.neighbors_combined) |
|
288 |
- if real: |
|
289 |
- self.update_neighbors(x, self.neighbors) |
|
290 |
- |
|
291 |
- # Update the scale |
|
292 |
- self.update_scale(x, y) |
|
293 |
- |
|
294 |
- # Interpolate |
|
295 |
- if not real: |
|
296 |
- self.data_interp = self.interpolate() |
|
297 |
- |
|
298 |
- # Update the losses |
|
299 |
- self.update_losses(x, self.data_combined, self.neighbors_combined, |
|
300 |
- self.losses_combined) |
|
301 |
- if real: |
|
302 |
- self.update_losses(x, self.data, self.neighbors, self.losses) |
|
303 |
- |
|
304 |
- # If the scale has doubled, recompute all losses. |
|
305 |
- if self._scale > self._oldscale * 2: |
|
306 |
- self.losses = {xs: self.interval_loss(*xs, self.data) |
|
307 |
- for xs in self.losses} |
|
308 |
- self.losses_combined = {x: self.interval_loss(*x, |
|
309 |
- self.data_combined) |
|
310 |
- for x in self.losses_combined} |
|
311 |
- self._oldscale = self._scale |
|
312 |
- |
|
313 |
- def choose_points(self, n, add_data=True): |
|
314 |
- """Return n points that are expected to maximally reduce the loss.""" |
|
315 |
- # Find out how to divide the n points over the intervals |
|
316 |
- # by finding positive integer n_i that minimize max(L_i / n_i) subject |
|
317 |
- # to a constraint that sum(n_i) = n + N, with N the total number of |
|
318 |
- # intervals. |
|
319 |
- |
|
320 |
- # Return equally spaced points within each interval to which points |
|
321 |
- # will be added. |
|
322 |
- if n == 0: |
|
323 |
- return [] |
|
324 |
- |
|
325 |
- # If the bounds have not been chosen yet, we choose them first. |
|
326 |
- points = [] |
|
327 |
- for bound in self.bounds: |
|
328 |
- if bound not in self.data and bound not in self.data_interp: |
|
329 |
- points.append(bound) |
|
330 |
- |
|
331 |
- # Ensure we return exactly 'n' points. |
|
332 |
- if points: |
|
333 |
- loss_improvements = [float('inf')] * n |
|
334 |
- if n <= 2: |
|
335 |
- points = points[:n] |
|
336 |
- else: |
|
337 |
- points = np.linspace(*self.bounds, n) |
|
338 |
- else: |
|
339 |
- def xs(x, n): |
|
340 |
- if n == 1: |
|
341 |
- return [] |
|
342 |
- else: |
|
343 |
- step = (x[1] - x[0]) / n |
|
344 |
- return [x[0] + step * i for i in range(1, n)] |
|
345 |
- |
|
346 |
- # Calculate how many points belong to each interval. |
|
347 |
- quals = [(-loss, x_range, 1) for (x_range, loss) in |
|
348 |
- self.losses_combined.items()] |
|
349 |
- |
|
350 |
- heapq.heapify(quals) |
|
351 |
- |
|
352 |
- for point_number in range(n): |
|
353 |
- quality, x, n = quals[0] |
|
354 |
- heapq.heapreplace(quals, (quality * n / (n + 1), x, n + 1)) |
|
355 |
- |
|
356 |
- points = list(itertools.chain.from_iterable(xs(x, n) |
|
357 |
- for quality, x, n in quals)) |
|
358 |
- |
|
359 |
- loss_improvements = list(itertools.chain.from_iterable( |
|
360 |
- itertools.repeat(-quality, n) |
|
361 |
- for quality, x, n in quals)) |
|
362 |
- |
|
363 |
- if add_data: |
|
364 |
- self.add_data(points, itertools.repeat(None)) |
|
365 |
- |
|
366 |
- return points, loss_improvements |
|
367 |
- |
|
368 |
- def interpolate(self, extra_points=None): |
|
369 |
- xs = list(self.data.keys()) |
|
370 |
- ys = list(self.data.values()) |
|
371 |
- xs_unfinished = list(self.data_interp.keys()) |
|
372 |
- |
|
373 |
- if extra_points is not None: |
|
374 |
- xs_unfinished += extra_points |
|
375 |
- |
|
376 |
- if len(ys) == 0: |
|
377 |
- interp_ys = (0,) * len(xs_unfinished) |
|
378 |
- else: |
|
379 |
- interp_ys = np.interp(xs_unfinished, xs, ys) |
|
380 |
- |
|
381 |
- data_interp = {x: y for x, y in zip(xs_unfinished, interp_ys)} |
|
382 |
- |
|
383 |
- return data_interp |
|
384 |
- |
|
385 |
- def plot(self): |
|
386 |
- if self.data: |
|
387 |
- return hv.Scatter(self.data) |
|
388 |
- else: |
|
389 |
- return hv.Scatter([]) |
|
390 |
- |
|
391 |
- def remove_unfinished(self): |
|
392 |
- self.data_interp = {} |
|
393 |
- self.losses_combined = copy(self.losses) |
|
394 |
- self.neighbors_combined = copy(self.neighbors) |
|
395 |
- |
|
396 |
- |
|
397 |
-def dispatch(child_functions, arg): |
|
398 |
- index, x = arg |
|
399 |
- return child_functions[index](x) |
|
400 |
- |
|
401 |
- |
|
402 |
-class BalancingLearner(BaseLearner): |
|
403 |
- """Choose the optimal points from a set of learners. |
|
404 |
- |
|
405 |
- Parameters |
|
406 |
- ---------- |
|
407 |
- learners : sequence of BaseLearner |
|
408 |
- The learners from which to choose. These must all have the same type. |
|
409 |
- |
|
410 |
- Notes |
|
411 |
- ----- |
|
412 |
- This learner compares the 'loss' calculated from the "child" learners. |
|
413 |
- This requires that the 'loss' from different learners *can be meaningfully |
|
414 |
- compared*. For the moment we enforce this restriction by requiring that |
|
415 |
- all learners are the same type but (depending on the internals of the |
|
416 |
- learner) it may be that the loss cannot be compared *even between learners |
|
417 |
- of the same type*. In this case the BalancingLearner will behave in an |
|
418 |
- undefined way. |
|
419 |
- """ |
|
420 |
- |
|
421 |
- def __init__(self, learners): |
|
422 |
- self.learners = learners |
|
423 |
- |
|
424 |
- # Naively we would make 'function' a method, but this causes problems |
|
425 |
- # when using executors from 'concurrent.futures' because we have to |
|
426 |
- # pickle the whole learner. |
|
427 |
- self.function = functools.partial(dispatch, [l.function for l |
|
428 |
- in self.learners]) |
|
429 |
- |
|
430 |
- if len(set(learner.__class__ for learner in self.learners)) > 1: |
|
431 |
- raise TypeError('A BalacingLearner can handle only one type' |
|
432 |
- 'of learners.') |
|
433 |
- |
|
434 |
- def _choose_and_add_points(self, n): |
|
435 |
- points = [] |
|
436 |
- for _ in range(n): |
|
437 |
- loss_improvements = [] |
|
438 |
- pairs = [] |
|
439 |
- for index, learner in enumerate(self.learners): |
|
440 |
- point, loss_improvement = learner.choose_points(n=1, |
|
441 |
- add_data=False) |
|
442 |
- loss_improvements.append(loss_improvement[0]) |
|
443 |
- pairs.append((index, point[0])) |
|
444 |
- x, _ = max(zip(pairs, loss_improvements), key=itemgetter(1)) |
|
445 |
- points.append(x) |
|
446 |
- self.add_point(x, None) |
|
447 |
- return points, None |
|
448 |
- |
|
449 |
- def choose_points(self, n, add_data=True): |
|
450 |
- """Chose points for learners.""" |
|
451 |
- if not add_data: |
|
452 |
- with restore(*self.learners): |
|
453 |
- return self._choose_and_add_points(n) |
|
454 |
- else: |
|
455 |
- return self._choose_and_add_points(n) |
|
456 |
- |
|
457 |
- def add_point(self, x, y): |
|
458 |
- index, x = x |
|
459 |
- self.learners[index].add_point(x, y) |
|
460 |
- |
|
461 |
- def loss(self, real=True): |
|
462 |
- return max(learner.loss(real) for learner in self.learners) |
|
463 |
- |
|
464 |
- def plot(self, index): |
|
465 |
- return self.learners[index].plot() |
|
466 |
- |
|
467 |
- def remove_unfinished(self): |
|
468 |
- """Remove uncomputed data from the learners.""" |
|
469 |
- for learner in self.learners: |
|
470 |
- learner.remove_unfinished() |
|
471 |
- |
|
472 |
- |
|
473 |
-# Learner2D and helper functions. |
|
474 |
- |
|
475 |
-def _losses_per_triangle(ip): |
|
476 |
- tri = ip.tri |
|
477 |
- vs = ip.values.ravel() |
|
478 |
- |
|
479 |
- gradients = interpolate.interpnd.estimate_gradients_2d_global( |
|
480 |
- tri, vs, tol=1e-6) |
|
481 |
- p = tri.points[tri.vertices] |
|
482 |
- g = gradients[tri.vertices] |
|
483 |
- v = vs[tri.vertices] |
|
484 |
- n_points_per_triangle = p.shape[1] |
|
485 |
- |
|
486 |
- dev = 0 |
|
487 |
- for j in range(n_points_per_triangle): |
|
488 |
- vest = v[:, j, None] + ((p[:, :, :] - p[:, j, None, :]) * |
|
489 |
- g[:, j, None, :]).sum(axis=-1) |
|
490 |
- dev += abs(vest - v).max(axis=1) |
|
491 |
- |
|
492 |
- q = p[:, :-1, :] - p[:, -1, None, :] |
|
493 |
- areas = abs(q[:, 0, 0] * q[:, 1, 1] - q[:, 0, 1] * q[:, 1, 0]) |
|
494 |
- areas /= special.gamma(n_points_per_triangle) |
|
495 |
- areas = np.sqrt(areas) |
|
496 |
- |
|
497 |
- vs_scale = vs[tri.vertices].ptp() |
|
498 |
- if vs_scale != 0: |
|
499 |
- dev /= vs_scale |
|
500 |
- |
|
501 |
- return dev * areas |
|
502 |
- |
|
503 |
-class Learner2D(BaseLearner): |
|
504 |
- """Learns and predicts a function 'f: ℝ^2 → ℝ'. |
|
505 |
- |
|
506 |
- Parameters |
|
507 |
- ---------- |
|
508 |
- function : callable |
|
509 |
- The function to learn. Must take a tuple of two real |
|
510 |
- parameters and return a real number. |
|
511 |
- bounds : list of 2-tuples |
|
512 |
- A list ``[(a1, b1), (a2, b2)]`` containing bounds, |
|
513 |
- one per dimension. |
|
514 |
- |
|
515 |
- Attributes |
|
516 |
- ---------- |
|
517 |
- points_combined |
|
518 |
- Sample points so far including the unknown interpolated ones. |
|
519 |
- values_combined |
|
520 |
- Sampled values so far including the unknown interpolated ones. |
|
521 |
- points |
|
522 |
- Sample points so far with real results. |
|
523 |
- values |
|
524 |
- Sampled values so far with real results. |
|
525 |
- |
|
526 |
- Notes |
|
527 |
- ----- |
|
528 |
- Adapted from an initial implementation by Pauli Virtanen. |
|
529 |
- |
|
530 |
- The sample points are chosen by estimating the point where the |
|
531 |
- linear and cubic interpolants based on the existing points have |
|
532 |
- maximal disagreement. This point is then taken as the next point |
|
533 |
- to be sampled. |
|
534 |
- |
|
535 |
- In practice, this sampling protocol results to sparser sampling of |
|
536 |
- smooth regions, and denser sampling of regions where the function |
|
537 |
- changes rapidly, which is useful if the function is expensive to |
|
538 |
- compute. |
|
539 |
- |
|
540 |
- This sampling procedure is not extremely fast, so to benefit from |
|
541 |
- it, your function needs to be slow enough to compute. |
|
542 |
- """ |
|
543 |
- |
|
544 |
- def __init__(self, function, bounds): |
|
545 |
- self.ndim = len(bounds) |
|
546 |
- if self.ndim != 2: |
|
547 |
- raise ValueError("Only 2-D sampling supported.") |
|
548 |
- self.bounds = tuple((float(a), float(b)) for a, b in bounds) |
|
549 |
- self._points = np.zeros([100, self.ndim]) |
|
550 |
- self._values = np.zeros([100], dtype=float) |
|
551 |
- self._stack = [] |
|
552 |
- self._interp = {} |
|
553 |
- |
|
554 |
- xy_mean = np.mean(self.bounds, axis=1) |
|
555 |
- xy_scale = np.ptp(self.bounds, axis=1) |
|
556 |
- |
|
557 |
- def scale(points): |
|
558 |
- return (points - xy_mean) / xy_scale |
|
559 |
- |
|
560 |
- def unscale(points): |
|
561 |
- return points * xy_scale + xy_mean |
|
562 |
- |
|
563 |
- self.scale = scale |
|
564 |
- self.unscale = unscale |
|
565 |
- |
|
566 |
- # Keeps track till which index _points and _values are filled |
|
567 |
- self.n = 0 |
|
568 |
- |
|
569 |
- self._bounds_points = list(itertools.product(*bounds)) |
|
570 |
- |
|
571 |
- # Add the loss improvement to the bounds in the stack |
|
572 |
- self._stack = [(*p, np.inf) for p in self._bounds_points] |
|
573 |
- |
|
574 |
- self.function = function |
|
575 |
- |
|
576 |
- @property |
|
577 |
- def points_combined(self): |
|
578 |
- return self._points[:self.n] |
|
579 |
- |
|
580 |
- @property |
|
581 |
- def values_combined(self): |
|
582 |
- return self._values[:self.n] |
|
583 |
- |
|
584 |
- @property |
|
585 |
- def points(self): |
|
586 |
- return np.delete(self.points_combined, |
|
587 |
- list(self._interp.values()), axis=0) |
|
588 |
- |
|
589 |
- @property |
|
590 |
- def values(self): |
|
591 |
- return np.delete(self.values_combined, |
|
592 |
- list(self._interp.values()), axis=0) |
|
593 |
- |
|
594 |
- def ip(self): |
|
595 |
- points = self.scale(self.points) |
|
596 |
- return interpolate.LinearNDInterpolator(points, self.values) |
|
597 |
- |
|
598 |
- @property |
|
599 |
- def n_real(self): |
|
600 |
- return self.n - len(self._interp) |
|
601 |
- |
|
602 |
- def ip_combined(self): |
|
603 |
- points = self.scale(self.points_combined) |
|
604 |
- values = self.values_combined |
|
605 |
- |
|
606 |
- # Interpolate the unfinished points |
|
607 |
- if self._interp: |
|
608 |
- n_interp = list(self._interp.values()) |
|
609 |
- bounds_are_done = not any(p in self._interp |
|
610 |
- for p in self._bounds_points) |
|
611 |
- if bounds_are_done: |
|
612 |
- values[n_interp] = self.ip()(points[n_interp]) |
|
613 |
- else: |
|
614 |
- # It is important not to return exact zeros because |
|
615 |
- # otherwise the algo will try to add the same point |
|
616 |
- # to the stack each time. |
|
617 |
- values[n_interp] = np.random.rand(len(n_interp)) * 1e-15 |
|
618 |
- |
|
619 |
- return interpolate.LinearNDInterpolator(points, values) |
|
620 |
- |
|
621 |
- def add_point(self, point, value): |
|
622 |
- nmax = self.values_combined.shape[0] |
|
623 |
- if self.n >= nmax: |
|
624 |
- self._values = np.resize(self._values, [2*nmax + 10]) |
|
625 |
- self._points = np.resize(self._points, [2*nmax + 10, self.ndim]) |
|
626 |
- |
|
627 |
- point = tuple(point) |
|
628 |
- |
|
629 |
- # When the point is not evaluated yet, add an entry to self._interp |
|
630 |
- # that saves the point and index. |
|
631 |
- if value is None: |
|
632 |
- self._interp[point] = self.n |
|
633 |
- old_point = False |
|
634 |
- else: |
|
635 |
- old_point = point in self._interp |
|
636 |
- |
|
637 |
- # If the point is new add it a new value to _points and _values, |
|
638 |
- # otherwise get the index of the value that is being replaced. |
|
639 |
- if old_point: |
|
640 |
- n = self._interp.pop(point) |
|
641 |
- else: |
|
642 |
- n = self.n |
|
643 |
- self.n += 1 |
|
644 |
- |
|
645 |
- self._points[n] = point |
|
646 |
- self._values[n] = value |
|
647 |
- |
|
648 |
- # Remove the point if in the stack. |
|
649 |
- for i, (*_point, _) in enumerate(self._stack): |
|
650 |
- if point == tuple(_point): |
|
651 |
- self._stack.pop(i) |
|
652 |
- break |
|
653 |
- |
|
654 |
- def _fill_stack(self, stack_till=None): |
|
655 |
- if stack_till is None: |
|
656 |
- stack_till = 1 |
|
657 |
- |
|
658 |
- if self.values_combined.shape[0] < self.ndim + 1: |
|
659 |
- raise ValueError("too few points...") |
|
660 |
- |
|
661 |
- # Interpolate |
|
662 |
- ip = self.ip_combined() |
|
663 |
- tri = ip.tri |
|
664 |
- |
|
665 |
- losses = _losses_per_triangle(ip) |
|
666 |
- |
|
667 |
- def point_exists(p): |
|
668 |
- eps = np.finfo(float).eps * self.points_combined.ptp() * 100 |
|
669 |
- if abs(p - self.points_combined).sum(axis=1).min() < eps: |
|
670 |
- return True |
|
671 |
- if self._stack: |
|
672 |
- _stack_points, _ = self._split_stack() |
|
673 |
- if abs(p - np.asarray(_stack_points)).sum(axis=1).min() < eps: |
|
674 |
- return True |
|
675 |
- return False |
|
676 |
- |
|
677 |
- for j, _ in enumerate(losses): |
|
678 |
- # Estimate point of maximum curvature inside the simplex |
|
679 |
- jsimplex = np.argmax(losses) |
|
680 |
- p = tri.points[tri.vertices[jsimplex]] |
|
681 |
- point_new = self.unscale(p.mean(axis=-2)) |
|
682 |
- |
|
683 |
- # XXX: not sure whether this is necessary it was there |
|
684 |
- # originally. |
|
685 |
- point_new = np.clip(point_new, *zip(*self.bounds)) |
|
686 |
- |
|
687 |
- # Check if it is really new |
|
688 |
- if point_exists(point_new): |
|
689 |
- losses[jsimplex] = 0 |
|
690 |
- continue |
|
691 |
- |
|
692 |
- # Add to stack |
|
693 |
- self._stack.append((*point_new, losses[jsimplex])) |
|
694 |
- |
|
695 |
- if len(self._stack) >= stack_till: |
|
696 |
- break |
|
697 |
- else: |
|
698 |
- losses[jsimplex] = 0 |
|
699 |
- |
|
700 |
- def _split_stack(self, n=None): |
|
701 |
- points = [] |
|
702 |
- loss_improvements = [] |
|
703 |
- for *point, loss_improvement in self._stack[:n]: |
|
704 |
- points.append(point) |
|
705 |
- loss_improvements.append(loss_improvement) |
|
706 |
- return points, loss_improvements |
|
707 |
- |
|
708 |
- def _choose_and_add_points(self, n): |
|
709 |
- if n <= len(self._stack): |
|
710 |
- points, loss_improvements = self._split_stack(n) |
|
711 |
- self.add_data(points, itertools.repeat(None)) |
|
712 |
- else: |
|
713 |
- points = [] |
|
714 |
- loss_improvements = [] |
|
715 |
- n_left = n |
|
716 |
- while n_left > 0: |
|
717 |
- # The while loop is needed because `stack_till` could be larger |
|
718 |
- # than the number of triangles between the points. Therefore |
|
719 |
- # it could fill up till a length smaller than `stack_till`. |
|
720 |
- if self.n >= 2**self.ndim: |
|
721 |
- # Only fill the stack if no more bounds left in _stack |
|
722 |
- self._fill_stack(stack_till=n_left) |
|
723 |
- new_points, new_loss_improvements = self._split_stack(n_left) |
|
724 |
- points += new_points |
|
725 |
- loss_improvements += new_loss_improvements |
|
726 |
- self.add_data(new_points, itertools.repeat(None)) |
|
727 |
- n_left -= len(new_points) |
|
728 |
- |
|
729 |
- return points, loss_improvements |
|
730 |
- |
|
731 |
- def choose_points(self, n, add_data=True): |
|
732 |
- if not add_data: |
|
733 |
- with restore(self): |
|
734 |
- return self._choose_and_add_points(n) |
|
735 |
- else: |
|
736 |
- return self._choose_and_add_points(n) |
|
737 |
- |
|
738 |
- def loss(self, real=True): |
|
739 |
- n = self.n_real if real else self.n |
|
740 |
- bounds_are_not_done = any(p in self._interp |
|
741 |
- for p in self._bounds_points) |
|
742 |
- if n <= 4 or bounds_are_not_done: |
|
743 |
- return np.inf |
|
744 |
- ip = self.ip() if real else self.ip_combined() |
|
745 |
- losses = _losses_per_triangle(ip) |
|
746 |
- return losses.max() |
|
747 |
- |
|
748 |
- def remove_unfinished(self): |
|
749 |
- self._points = self.points.copy() |
|
750 |
- self._values = self.values.copy() |
|
751 |
- self.n -= len(self._interp) |
|
752 |
- self._interp = {} |
|
753 |
- |
|
754 |
- def plot(self, n_x=201, n_y=201): |
|
755 |
- x, y = self.bounds |
|
756 |
- lbrt = x[0], y[0], x[1], y[1] |
|
757 |
- if self.n_real >= 4: |
|
758 |
- x = np.linspace(-0.5, 0.5, n_x) |
|
759 |
- y = np.linspace(-0.5, 0.5, n_y) |
|
760 |
- ip = self.ip() |
|
761 |
- z = ip(x[:, None], y[None, :]) |
|
762 |
- return hv.Image(np.rot90(z), bounds=lbrt) |
|
763 |
- else: |
|
764 |
- return hv.Image(np.zeros((2, 2)), bounds=lbrt) |
|
765 |
- |
|
766 |
- |
|
767 |
-@contextmanager |
|
768 |
-def restore(*learners): |
|
769 |
- states = [learner.__getstate__() for learner in learners] |
|
770 |
- try: |
|
771 |
- yield |
|
772 |
- finally: |
|
773 |
- for state, learner in zip(states, learners): |
|
774 |
- learner.__setstate__(state) |
775 | 0 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,7 @@ |
1 |
+# -*- coding: utf-8 -*- |
|
2 |
+from .average_learner import AverageLearner |
|
3 |
+from .base_learner import BaseLearner |
|
4 |
+from .balancing_learner import BalancingLearner |
|
5 |
+from .learner1D import Learner1D |
|
6 |
+from .learner2D import Learner2D |
|
7 |
+from .integrator_learner import IntegratorLearner |
0 | 8 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,87 @@ |
1 |
+# -*- coding: utf-8 -*- |
|
2 |
+import itertools |
|
3 |
+from math import sqrt |
|
4 |
+ |
|
5 |
+import holoviews as hv |
|
6 |
+import numpy as np |
|
7 |
+ |
|
8 |
+from .base_learner import BaseLearner |
|
9 |
+ |
|
10 |
+class AverageLearner(BaseLearner): |
|
11 |
+ """A naive implementation of adaptive computing of averages. |
|
12 |
+ |
|
13 |
+ The learned function must depend on an integer input variable that |
|
14 |
+ represents the source of randomness. |
|
15 |
+ |
|
16 |
+ Parameters: |
|
17 |
+ ----------- |
|
18 |
+ atol : float |
|
19 |
+ Desired absolute tolerance |
|
20 |
+ rtol : float |
|
21 |
+ Desired relative tolerance |
|
22 |
+ """ |
|
23 |
+ |
|
24 |
+ def __init__(self, function, atol=None, rtol=None): |
|
25 |
+ if atol is None and rtol is None: |
|
26 |
+ raise Exception('At least one of `atol` and `rtol` should be set.') |
|
27 |
+ if atol is None: |
|
28 |
+ atol = np.inf |
|
29 |
+ if rtol is None: |
|
30 |
+ rtol = np.inf |
|
31 |
+ |
|
32 |
+ self.data = {} |
|
33 |
+ self.function = function |
|
34 |
+ self.atol = atol |
|
35 |
+ self.rtol = rtol |
|
36 |
+ self.n = 0 |
|
37 |
+ self.n_requested = 0 |
|
38 |
+ self.sum_f = 0 |
|
39 |
+ self.sum_f_sq = 0 |
|
40 |
+ |
|
41 |
+ def choose_points(self, n, add_data=True): |
|
42 |
+ points = list(range(self.n_requested, self.n_requested + n)) |
|
43 |
+ loss_improvements = [self.loss()] * n |
|
44 |
+ if add_data: |
|
45 |
+ self.add_data(points, itertools.repeat(None)) |
|
46 |
+ return points, loss_improvements |
|
47 |
+ |
|
48 |
+ def add_point(self, n, value): |
|
49 |
+ self.data[n] = value |
|
50 |
+ if value is None: |
|
51 |
+ self.n_requested += 1 |
|
52 |
+ return |
|
53 |
+ else: |
|
54 |
+ self.n += 1 |
|
55 |
+ self.sum_f += value |
|
56 |
+ self.sum_f_sq += value**2 |
|
57 |
+ |
|
58 |
+ @property |
|
59 |
+ def mean(self): |
|
60 |
+ return self.sum_f / self.n |
|
61 |
+ |
|
62 |
+ @property |
|
63 |
+ def std(self): |
|
64 |
+ n = self.n |
|
65 |
+ if n < 2: |
|
66 |
+ return np.inf |
|
67 |
+ return sqrt((self.sum_f_sq - n * self.mean**2) / (n - 1)) |
|
68 |
+ |
|
69 |
+ def loss(self, real=True): |
|
70 |
+ n = self.n |
|
71 |
+ if n < 2: |
|
72 |
+ return np.inf |
|
73 |
+ standard_error = self.std / sqrt(n if real else self.n_requested) |
|
74 |
+ return max(standard_error / self.atol, |
|
75 |
+ standard_error / abs(self.mean) / self.rtol) |
|
76 |
+ |
|
77 |
+ def remove_unfinished(self): |
|
78 |
+ """Remove uncomputed data from the learner.""" |
|
79 |
+ pass |
|
80 |
+ |
|
81 |
+ def plot(self): |
|
82 |
+ vals = [v for v in self.data.values() if v is not None] |
|
83 |
+ if not vals: |
|
84 |
+ return hv.Histogram([[], []]) |
|
85 |
+ num_bins = int(max(5, sqrt(self.n))) |
|
86 |
+ vals = hv.Points(vals) |
|
87 |
+ return hv.operation.histogram(vals, num_bins=num_bins, dimension=1) |
0 | 88 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,82 @@ |
1 |
+# -*- coding: utf-8 -*- |
|
2 |
+import functools |
|
3 |
+from operator import itemgetter |
|
4 |
+ |
|
5 |
+from .base_learner import BaseLearner |
|
6 |
+from .utils import restore |
|
7 |
+ |
|
8 |
+ |
|
9 |
+def dispatch(child_functions, arg): |
|
10 |
+ index, x = arg |
|
11 |
+ return child_functions[index](x) |
|
12 |
+ |
|
13 |
+ |
|
14 |
+class BalancingLearner(BaseLearner): |
|
15 |
+ """Choose the optimal points from a set of learners. |
|
16 |
+ |
|
17 |
+ Parameters |
|
18 |
+ ---------- |
|
19 |
+ learners : sequence of BaseLearner |
|
20 |
+ The learners from which to choose. These must all have the same type. |
|
21 |
+ |
|
22 |
+ Notes |
|
23 |
+ ----- |
|
24 |
+ This learner compares the 'loss' calculated from the "child" learners. |
|
25 |
+ This requires that the 'loss' from different learners *can be meaningfully |
|
26 |
+ compared*. For the moment we enforce this restriction by requiring that |
|
27 |
+ all learners are the same type but (depending on the internals of the |
|
28 |
+ learner) it may be that the loss cannot be compared *even between learners |
|
29 |
+ of the same type*. In this case the BalancingLearner will behave in an |
|
30 |
+ undefined way. |
|
31 |
+ """ |
|
32 |
+ |
|
33 |
+ def __init__(self, learners): |
|
34 |
+ self.learners = learners |
|
35 |
+ |
|
36 |
+ # Naively we would make 'function' a method, but this causes problems |
|
37 |
+ # when using executors from 'concurrent.futures' because we have to |
|
38 |
+ # pickle the whole learner. |
|
39 |
+ self.function = functools.partial(dispatch, [l.function for l |
|
40 |
+ in self.learners]) |
|
41 |
+ |
|
42 |
+ if len(set(learner.__class__ for learner in self.learners)) > 1: |
|
43 |
+ raise TypeError('A BalacingLearner can handle only one type' |
|
44 |
+ 'of learners.') |
|
45 |
+ |
|
46 |
+ def _choose_and_add_points(self, n): |
|
47 |
+ points = [] |
|
48 |
+ for _ in range(n): |
|
49 |
+ loss_improvements = [] |
|
50 |
+ pairs = [] |
|
51 |
+ for index, learner in enumerate(self.learners): |
|
52 |
+ point, loss_improvement = learner.choose_points(n=1, |
|
53 |
+ add_data=False) |
|
54 |
+ loss_improvements.append(loss_improvement[0]) |
|
55 |
+ pairs.append((index, point[0])) |
|
56 |
+ x, _ = max(zip(pairs, loss_improvements), key=itemgetter(1)) |
|
57 |
+ points.append(x) |
|
58 |
+ self.add_point(x, None) |
|
59 |
+ return points, None |
|
60 |
+ |
|
61 |
+ def choose_points(self, n, add_data=True): |
|
62 |
+ """Chose points for learners.""" |
|
63 |
+ if not add_data: |
|
64 |
+ with restore(*self.learners): |
|
65 |
+ return self._choose_and_add_points(n) |
|
66 |
+ else: |
|
67 |
+ return self._choose_and_add_points(n) |
|
68 |
+ |
|
69 |
+ def add_point(self, x, y): |
|
70 |
+ index, x = x |
|
71 |
+ self.learners[index].add_point(x, y) |
|
72 |
+ |
|
73 |
+ def loss(self, real=True): |
|
74 |
+ return max(learner.loss(real) for learner in self.learners) |
|
75 |
+ |
|
76 |
+ def plot(self, index): |
|
77 |
+ return self.learners[index].plot() |
|
78 |
+ |
|
79 |
+ def remove_unfinished(self): |
|
80 |
+ """Remove uncomputed data from the learners.""" |
|
81 |
+ for learner in self.learners: |
|
82 |
+ learner.remove_unfinished() |
0 | 83 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,83 @@ |
1 |
+# -*- coding: utf-8 -*- |
|
2 |
+import abc |
|
3 |
+import collections |
|
4 |
+from copy import deepcopy |
|
5 |
+ |
|
6 |
+ |
|
7 |
+class BaseLearner(metaclass=abc.ABCMeta): |
|
8 |
+ """Base class for algorithms for learning a function 'f: X → Y'. |
|
9 |
+ |
|
10 |
+ Attributes |
|
11 |
+ ---------- |
|
12 |
+ function : callable: X → Y |
|
13 |
+ The function to learn. |
|
14 |
+ data : dict: X → Y |
|
15 |
+ 'function' evaluated at certain points. |
|
16 |
+ The values can be 'None', which indicates that the point |
|
17 |
+ will be evaluated, but that we do not have the result yet. |
|
18 |
+ |
|
19 |
+ Subclasses may define a 'plot' method that takes no parameters |
|
20 |
+ and returns a holoviews plot. |
|
21 |
+ """ |
|
22 |
+ |
|
23 |
+ def add_data(self, xvalues, yvalues): |
|
24 |
+ """Add data to the learner. |
|
25 |
+ |
|
26 |
+ Parameters |
|
27 |
+ ---------- |
|
28 |
+ xvalues : value from the function domain, or iterable of such |
|
29 |
+ Values from the domain of the learned function. |
|
30 |
+ yvalues : value from the function image, or iterable of such |
|
31 |
+ Values from the range of the learned function, or None. |
|
32 |
+ If 'None', then it indicates that the value has not yet |
|
33 |
+ been computed. |
|
34 |
+ """ |
|
35 |
+ if all(isinstance(i, collections.Iterable) for i in [xvalues, yvalues]): |
|
36 |
+ for x, y in zip(xvalues, yvalues): |
|
37 |
+ self.add_point(x, y) |
|
38 |
+ else: |
|
39 |
+ self.add_point(xvalues, yvalues) |
|
40 |
+ |
|
41 |
+ @abc.abstractmethod |
|
42 |
+ def add_point(self, x, y): |
|
43 |
+ """Add a single datapoint to the learner.""" |
|
44 |
+ pass |
|
45 |
+ |
|
46 |
+ @abc.abstractmethod |
|
47 |
+ def remove_unfinished(self): |
|
48 |
+ """Remove uncomputed data from the learner.""" |
|
49 |
+ pass |
|
50 |
+ |
|
51 |
+ @abc.abstractmethod |
|
52 |
+ def loss(self, real=True): |
|
53 |
+ """Return the loss for the current state of the learner. |
|
54 |
+ |
|
55 |
+ Parameters |
|
56 |
+ ---------- |
|
57 |
+ real : bool, default: True |
|
58 |
+ If False, return the "expected" loss, i.e. the |
|
59 |
+ loss including the as-yet unevaluated points |
|
60 |
+ (possibly by interpolation). |
|
61 |
+ """ |
|
62 |
+ |
|
63 |
+ @abc.abstractmethod |
|
64 |
+ def choose_points(self, n, add_data=True): |
|
65 |
+ """Choose the next 'n' points to evaluate. |
|
66 |
+ |
|
67 |
+ Parameters |
|
68 |
+ ---------- |
|
69 |
+ n : int |
|
70 |
+ The number of points to choose. |
|
71 |
+ add_data : bool, default: True |
|
72 |
+ If True, add the chosen points to this |
|
73 |
+ learner's 'data' with 'None' for the 'y' |
|
74 |
+ values. Set this to False if you do not |
|
75 |
+ want to modify the state of the learner. |
|
76 |
+ """ |
|
77 |
+ pass |
|
78 |
+ |
|
79 |
+ def __getstate__(self): |
|
80 |
+ return deepcopy(self.__dict__) |
|
81 |
+ |
|
82 |
+ def __setstate__(self, state): |
|
83 |
+ self.__dict__ = state |
0 | 84 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,160 @@ |
1 |
+# -*- coding: utf-8 -*- |
|
2 |
+from fractions import Fraction |
|
3 |
+from collections import defaultdict |
|
4 |
+import numpy as np |
|
5 |
+import scipy.linalg |
|
6 |
+ |
|
7 |
+def legendre(n): |
|
8 |
+ """Return the first n Legendre polynomials. |
|
9 |
+ |
|
10 |
+ The polynomials have *standard* normalization, i.e. |
|
11 |
+ int_{-1}^1 dx L_n(x) L_m(x) = delta(m, n) * 2 / (2 * n + 1). |
|
12 |
+ |
|
13 |
+ The return value is a list of list of fraction.Fraction instances. |
|
14 |
+ """ |
|
15 |
+ result = [[Fraction(1)], [Fraction(0), Fraction(1)]] |
|
16 |
+ if n <= 2: |
|
17 |
+ return result[:n] |
|
18 |
+ for i in range(2, n): |
|
19 |
+ # Use Bonnet's recursion formula. |
|
20 |
+ new = (i + 1) * [Fraction(0)] |
|
21 |
+ new[1:] = (r * (2*i - 1) for r in result[-1]) |
|
22 |
+ new[:-2] = (n - r * (i - 1) for n, r in zip(new[:-2], result[-2])) |
|
23 |
+ new[:] = (n / i for n in new) |
|
24 |
+ result.append(new) |
|
25 |
+ return result |
|
26 |
+ |
|
27 |
+ |
|
28 |
+def newton(n): |
|
29 |
+ """Compute the monomial coefficients of the Newton polynomial over the |
|
30 |
+ nodes of the n-point Clenshaw-Curtis quadrature rule. |
|
31 |
+ """ |
|
32 |
+ # The nodes of the Clenshaw-Curtis rule are x_i = -cos(i * Pi / (n-1)). |
|
33 |
+ # Here, we calculate the coefficients c_i such that sum_i c_i * x^i |
|
34 |
+ # = prod_i (x - x_i). The coefficients are thus sums of products of |
|
35 |
+ # cosines. |
|
36 |
+ # |
|
37 |
+ # This routine uses the relation |
|
38 |
+ # cos(a) cos(b) = (cos(a + b) + cos(a - b)) / 2 |
|
39 |
+ # to efficiently calculate the coefficients. |
|
40 |
+ # |
|
41 |
+ # The dictionary 'terms' descibes the terms that make up the |
|
42 |
+ # monomial coefficients. Each item ((d, a), m) corresponds to a |
|
43 |
+ # term m * cos(a * Pi / n) to be added to prefactor of the |
|
44 |
+ # monomial x^(n-d). |
|
45 |
+ |
|
46 |
+ mod = 2 * (n-1) |
|
47 |
+ terms = defaultdict(int) |
|
48 |
+ terms[0, 0] += 1 |
|
49 |
+ |
|
50 |
+ for i in range(n): |
|
51 |
+ newterms = [] |
|
52 |
+ for (d, a), m in terms.items(): |
|
53 |
+ for b in [i, -i]: |
|
54 |
+ # In order to reduce the number of terms, cosine |
|
55 |
+ # arguments are mapped back to the inteval [0, pi/2). |
|
56 |
+ arg = (a + b) % mod |
|
57 |
+ if arg > n-1: |
|
58 |
+ arg = mod - arg |
|
59 |
+ if arg >= n // 2: |
|
60 |
+ if n % 2 and arg == n // 2: |
|
61 |
+ # Zero term: ignore |
|
62 |
+ continue |
|
63 |
+ newterms.append((d + 1, n - 1 - arg, -m)) |
|
64 |
+ else: |
|
65 |
+ newterms.append((d + 1, arg, m)) |
|
66 |
+ for d, s, m in newterms: |
|
67 |
+ terms[d, s] += m |
|
68 |
+ |
|
69 |
+ c = (n + 1) * [0] |
|
70 |
+ for (d, a), m in terms.items(): |
|
71 |
+ if m and a != 0: |
|
72 |
+ raise ValueError("Newton polynomial cannot be represented exactly.") |
|
73 |
+ c[n - d] += m |
|
74 |
+ # The check could be removed and the above line replaced by |
|
75 |
+ # the following, but then the result would be no longer exact. |
|
76 |
+ # c[n - d] += m * np.cos(a * np.pi / (n - 1)) |
|
77 |
+ |
|
78 |
+ cf = np.array(c, float) |
|
79 |
+ assert all(int(cfe) == ce for cfe, ce in zip(cf, c)), 'Precision loss' |
|
80 |
+ |
|
81 |
+ cf /= 2.**np.arange(n, -1, -1) |
|
82 |
+ return cf |
|
83 |
+ |
|
84 |
+ |
|
85 |
+def scalar_product(a, b): |
|
86 |
+ """Compute the polynomial scalar product int_-1^1 dx a(x) b(x). |
|
87 |
+ |
|
88 |
+ The args must be sequences of polynomial coefficients. This |
|
89 |
+ function is careful to use the input data type for calculations. |
|
90 |
+ """ |
|
91 |
+ la = len(a) |
|
92 |
+ lc = len(b) + la + 1 |
|
93 |
+ |
|
94 |
+ # Compute the even coefficients of the product of a and b. |
|
95 |
+ c = lc * [a[0].__class__()] |
|
96 |
+ for i, bi in enumerate(b): |
|
97 |
+ if bi == 0: |
|
98 |
+ continue |
|
99 |
+ for j in range(i % 2, la, 2): |
|
100 |
+ c[i + j] += a[j] * bi |
|
101 |
+ |
|
102 |
+ # Calculate the definite integral from -1 to 1. |
|
103 |
+ return 2 * sum(c[i] / (i + 1) for i in range(0, lc, 2)) |
|
104 |
+ |
|
105 |
+ |
|
106 |
+def calc_bdef(ns): |
|
107 |
+ """Calculate the decompositions of Newton polynomials (over the nodes |
|
108 |
+ of the n-point Clenshaw-Curtis quadrature rule) in terms of |
|
109 |
+ Legandre polynomials. |
|
110 |
+ |
|
111 |
+ The parameter 'ns' is a sequence of numers of points of the |
|
112 |
+ quadrature rule. The return value is a corresponding sequence of |
|
113 |
+ normalized Legendre polynomial coefficients. |
|
114 |
+ """ |
|
115 |
+ legs = legendre(max(ns) + 1) |
|
116 |
+ result = [] |
|
117 |
+ for n in ns: |
|
118 |
+ poly = [] |
|
119 |
+ a = list(map(Fraction, newton(n))) |
|
120 |
+ for b in legs[:n + 1]: |
|
121 |
+ igral = scalar_product(a, b) |
|
122 |
+ |
|
123 |
+ # Normalize & store. (The polynomials returned by |
|
124 |
+ # legendre() have standard normalization that is not |
|
125 |
+ # orthonormal.) |
|
126 |
+ poly.append(np.sqrt((2*len(b) - 1) / 2) * igral) |
|
127 |
+ |
|
128 |
+ result.append(np.array(poly)) |
|
129 |
+ return result |
|
130 |
+ |
|
131 |
+ |
|
132 |
+def calc_V(x, n): |
|
133 |
+ V = [np.ones(x.shape), x.copy()] |
|
134 |
+ for i in range(2, n): |
|
135 |
+ V.append((2*i-1) / i * x * V[-1] - (i-1) / i * V[-2]) |
|
136 |
+ for i in range(n): |
|
137 |
+ V[i] *= np.sqrt(i + 0.5) |
|
138 |
+ return np.array(V).T |
|
139 |
+ |
|
140 |
+# the nodes and Newton polynomials |
|
141 |
+ns = (5, 9, 17, 33) |
|
142 |
+xi = [-np.cos(np.linspace(0, np.pi, n)) for n in ns] |
|
143 |
+ |
|
144 |
+# Make `xi` perfectly anti-symmetric, important for splitting the intervals |
|
145 |
+xi = [(row - row[::-1]) / 2 for row in xi] |
|
146 |
+ |
|
147 |
+# compute the coefficients |
|
148 |
+V = [calc_V(x, n) for x, n in zip(xi, ns)] |
|
149 |
+V_inv = list(map(scipy.linalg.inv, V)) |
|
150 |
+Vcond = list(map(np.linalg.cond, V)) |
|
151 |
+ |
|
152 |
+# shift matrix |
|
153 |
+T_left, T_right = [V_inv[3] @ calc_V((xi[3] + a) / 2, ns[3]) for a in [-1, 1]] |
|
154 |
+ |
|
155 |
+# set-up the downdate matrix |
|
156 |
+k = np.arange(ns[3]) |
|
157 |
+alpha = np.sqrt((k+1)**2 / (2*k+1) / (2*k+3)) |
|
158 |
+gamma = np.concatenate([[0, 0], np.sqrt(k[2:]**2 / (4*k[2:]**2-1))]) |
|
159 |
+ |
|
160 |
+b_def = calc_bdef(ns) |
0 | 161 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,575 @@ |
1 |
+# -*- coding: utf-8 -*- |
|
2 |
+# Copyright 2010 Pedro Gonnet |
|
3 |
+# Copyright 2017 Christoph Groth |
|
4 |
+# Copyright 2017 `adaptive` authors |
|
5 |
+ |
|
6 |
+from collections import defaultdict |
|
7 |
+from math import sqrt |
|
8 |
+from operator import attrgetter |
|
9 |
+ |
|
10 |
+import holoviews as hv |
|
11 |
+import numpy as np |
|
12 |
+from scipy.linalg import norm |
|
13 |
+from sortedcontainers import SortedDict, SortedSet |
|
14 |
+ |
|
15 |
+from .base_learner import BaseLearner |
|
16 |
+from .integrator_coeffs import (b_def, T_left, T_right, ns, |
|
17 |
+ xi, V_inv, Vcond, alpha, gamma) |
|
18 |
+ |
|
19 |
+ |
|
20 |
+eps = np.spacing(1) |
|
21 |
+ |
|
22 |
+ |
|
23 |
+def _downdate(c, nans, depth): |
|
24 |
+ b = b_def[depth].copy() |
|
25 |
+ m = ns[depth] - 1 |
|
26 |
+ for i in nans: |
|
27 |
+ b[m + 1] /= alpha[m] |
|
28 |
+ xii = xi[depth][i] |
|
29 |
+ b[m] = (b[m] + xii * b[m + 1]) / alpha[m - 1] |
|
30 |
+ for j in range(m - 1, 0, -1): |
|
31 |
+ b[j] = ((b[j] + xii * b[j + 1] - gamma[j + 1] * b[j + 2]) |
|
32 |
+ / alpha[j - 1]) |
|
33 |
+ b = b[1:] |
|
34 |
+ |
|
35 |
+ c[:m] -= c[m] / b[m] * b[:m] |
|
36 |
+ c[m] = 0 |
|
37 |
+ m -= 1 |
|
38 |
+ |
|
39 |
+ |
|
40 |
+def _zero_nans(fx): |
|
41 |
+ """Caution: this function modifies fx.""" |
|
42 |
+ nans = [] |
|
43 |
+ for i in range(len(fx)): |
|
44 |
+ if not np.isfinite(fx[i]): |
|
45 |
+ nans.append(i) |
|
46 |
+ fx[i] = 0.0 |
|
47 |
+ return nans |
|
48 |
+ |
|
49 |
+ |
|
50 |
+def _calc_coeffs(fx, depth): |
|
51 |
+ """Caution: this function modifies fx.""" |
|
52 |
+ nans = _zero_nans(fx) |
|
53 |
+ c_new = V_inv[depth] @ fx |
|
54 |
+ if nans: |
|
55 |
+ fx[nans] = np.nan |
|
56 |
+ _downdate(c_new, nans, depth) |
|
57 |
+ return c_new |
|
58 |
+ |
|
59 |
+ |
|
60 |
+class DivergentIntegralError(ValueError): |
|
61 |
+ pass |
|
62 |
+ |
|
63 |
+ |
|
64 |
+class Interval: |
|
65 |
+ |
|
66 |
+ """ |
|
67 |
+ Attributes |
|
68 |
+ ---------- |
|
69 |
+ (a, b) : (float, float) |
|
70 |
+ The left and right boundary of the interval. |
|
71 |
+ c : numpy array of shape (4, 33) |
|
72 |
+ Coefficients of the fit. |
|
73 |
+ c_old : numpy array of shape `len(fx)` |
|
74 |
+ Coefficients of the fit. |
|
75 |
+ depth : int |
|
76 |
+ The level of refinement, `depth=0` means that it has 5 (the minimal number of) points and |
|
77 |
+ `depth=3` means it has 33 (the maximal number of) points. |
|
78 |
+ fx : numpy array of size `(5, 9, 17, 33)[self.depth]`. |
|
79 |
+ The function values at the points `self.points(self.depth)`. |
|
80 |
+ igral : float |
|
81 |
+ The integral value of the interval. |
|
82 |
+ err : float |
|
83 |
+ The error associated with the integral value. |
|
84 |
+ tol : float |
|
85 |
+ The relative tolerance that needs to be reached in the precision of the integral. |
|
86 |
+ rdepth : int |
|
87 |
+ The number of splits that the interval has gone through, starting at 1. |
|
88 |
+ ndiv : int |
|
89 |
+ A number that is used to determine whether the interval is divergent. |
|
90 |
+ parent : Interval |
|
91 |
+ The parent interval. If the interval resulted from a refinement, it has one parent. If |
|
92 |
+ it resulted from a split, it has two parents. |
|
93 |
+ children : list of `Interval`s |
|
94 |
+ The intervals resulting from a split or refinement. |
|
95 |
+ done_points : dict |
|
96 |
+ A dictionary with the x-values and y-values: `{x1: y1, x2: y2 ...}`. |
|
97 |
+ est_err : float |
|
98 |
+ The sum of the errors of the children, if one of the children is not ready yet, |
|
99 |
+ the error is infinity. |
|
100 |
+ discard : bool |
|
101 |
+ If True, the interval and it's children are not participating in the |
|
102 |
+ determination of the total integral anymore because its parent had a |
|
103 |
+ refinement when the data of the interval was not known, and later it appears |
|
104 |
+ that this interval has to be split. |
|
105 |
+ complete : bool |
|
106 |
+ All the function values in the interval are known. This does not necessarily mean |
|
107 |
+ that the integral value has been calculated, see `self.done`. |
|
108 |
+ done : bool |
|
109 |
+ The integral and the error for the interval has been calculated. |
|
110 |
+ branch_complete : bool |
|
111 |
+ The interval can be used to determine the total integral, however if its children are |
|
112 |
+ also `branch_complete`, they should be used. |
|
113 |
+ |
|
114 |
+ """ |
|
115 |
+ |
|
116 |
+ __slots__ = ['a', 'b', 'c', 'c_old', 'depth', 'fx', 'igral', 'err', 'tol', |
|
117 |
+ 'rdepth', 'ndiv', 'parent', 'children', 'done_points', |
|
118 |
+ 'est_err', 'discard'] |
|
119 |
+ |
|
120 |
+ def __init__(self, a, b): |
|
121 |
+ self.children = [] |
|
122 |
+ self.done_points = SortedDict() |
|
123 |
+ self.a = a |
|
124 |
+ self.b = b |
|
125 |
+ self.c = np.zeros((len(ns), ns[-1])) |
|
126 |
+ self.est_err = np.inf |
|
127 |
+ self.discard = False |
|
128 |
+ self.igral = None |
|
129 |
+ |
|
130 |
+ @classmethod |
|
131 |
+ def make_first(cls, a, b, tol): |
|
132 |
+ ival = Interval(a, b) |
|
133 |
+ ival.tol = tol |
|
134 |
+ ival.ndiv = 0 |
|
135 |
+ ival.rdepth = 1 |
|
136 |
+ ival.parent = None |
|
137 |
+ ival.depth = 3 |
|
138 |
+ ival.c_old = np.zeros(ns[ival.depth]) |
|
139 |
+ ival.err = np.inf |
|
140 |
+ return ival, ival.points(ival.depth) |
|
141 |
+ |
|
142 |
+ @property |
|
143 |
+ def complete(self): |
|
144 |
+ """The interval has all the y-values to calculate the intergral.""" |
|
145 |
+ return len(self.done_points) == ns[self.depth] |
|
146 |
+ |
|
147 |
+ @property |
|
148 |
+ def done(self): |
|
149 |
+ """The interval is complete and has the intergral calculated.""" |
|
150 |
+ return hasattr(self, 'fx') and self.complete |
|
151 |
+ |
|
152 |
+ @property |
|
153 |
+ def branch_complete(self): |
|
154 |
+ if not self.children and self.complete: |
|
155 |
+ return True |
|
156 |
+ else: |
|
157 |
+ return np.isfinite(sum(i.est_err for i in self.children)) |
|
158 |
+ |
|
159 |
+ @property |
|
160 |
+ def T(self): |
|
161 |
+ """Get the correct shift matrix. |
|
162 |
+ |
|
163 |
+ Should only be called on children of a split interval. |
|
164 |
+ """ |
|
165 |
+ assert self.parent is not None |
|
166 |
+ left = self.a == self.parent.a |
|
167 |
+ right = self.b == self.parent.b |
|
168 |
+ assert left != right |
|
169 |
+ return T_left if left else T_right |
|
170 |
+ |
|
171 |
+ def points(self, depth): |
|
172 |
+ a = self.a |
|
173 |
+ b = self.b |
|
174 |
+ return (a+b)/2 + (b-a)*xi[depth]/2 |
|
175 |
+ |
|
176 |
+ def refine(self): |
|
177 |
+ ival = Interval(self.a, self.b) |
|
178 |
+ ival.tol = self.tol |
|
179 |
+ ival.rdepth = self.rdepth |
|
180 |
+ ival.ndiv = self.ndiv |
|
181 |
+ ival.c = self.c.copy() |
|
182 |
+ ival.c_old = self.c_old.copy() |
|
183 |
+ ival.parent = self |
|
184 |
+ self.children = [ival] |
|
185 |
+ ival.err = self.err |
|
186 |
+ ival.depth = self.depth + 1 |
|
187 |
+ points = ival.points(ival.depth) |
|
188 |
+ return ival, points |
|
189 |
+ |
|
190 |
+ def split(self): |
|
191 |
+ points = self.points(self.depth) |
|
192 |
+ |
|
193 |
+ a = self.a |
|
194 |
+ b = self.b |
|
195 |
+ m = points[len(points) // 2] |
|
196 |
+ |
|
197 |
+ ivals = [Interval(a, m), Interval(m, b)] |
|
198 |
+ self.children = ivals |
|
199 |
+ |
|
200 |
+ for ival in ivals: |
|
201 |
+ ival.depth = 0 |
|
202 |
+ ival.tol = self.tol / sqrt(2) |
|
203 |
+ ival.c_old = self.c_old.copy() |
|
204 |
+ ival.rdepth = self.rdepth + 1 |
|
205 |
+ ival.parent = self |
|
206 |
+ ival.ndiv = self.ndiv |
|
207 |
+ ival.err = self.err / sqrt(2) |
|
208 |
+ |
|
209 |
+ return ivals |
|
210 |
+ |
|
211 |
+ def complete_process(self): |
|
212 |
+ """Calculate the integral contribution and error from this interval, |
|
213 |
+ and update the estimated error of all ancestor intervals.""" |
|
214 |
+ force_split = False |
|
215 |
+ if self.parent is None: |
|
216 |
+ self.process_make_first() |
|
217 |
+ elif self.rdepth > self.parent.rdepth: |
|
218 |
+ self.process_split() |
|
219 |
+ else: |
|
220 |
+ force_split = self.process_refine() |
|
221 |
+ |
|
222 |
+ # Set the estimated error |
|
223 |
+ if np.isinf(self.est_err): |
|
224 |
+ self.est_err = self.err |
|
225 |
+ ival = self.parent |
|
226 |
+ while ival is not None: |
|
227 |
+ # update the error estimates on all ancestor intervals |
|
228 |
+ children_err = sum(i.est_err for i in ival.children) |
|
229 |
+ if np.isfinite(children_err): |
|
230 |
+ ival.est_err = children_err |
|
231 |
+ ival = ival.parent |
|
232 |
+ else: |
|
233 |
+ break |
|
234 |
+ |
|
235 |
+ # Check whether the point spacing is smaller than machine precision |
|
236 |
+ # and pop the interval with the largest error and do not split |
|
237 |
+ remove = self.err < (abs(self.igral) * eps * Vcond[self.depth]) |
|
238 |
+ if remove: |
|
239 |
+ # If this interval is discarded from ivals, there is no need |
|
240 |
+ # to split it further. |
|
241 |
+ force_split = False |
|
242 |
+ |
|
243 |
+ return force_split, remove |
|
244 |
+ |
|
245 |
+ def process_make_first(self): |
|
246 |
+ fx = np.array(self.done_points.values()) |
|
247 |
+ nans = _zero_nans(fx) |
|
248 |
+ |
|
249 |
+ self.c[3] = V_inv[3] @ fx |
|
250 |
+ self.c[2, :ns[2]] = V_inv[2] @ fx[:ns[3]:2] |
|
251 |
+ fx[nans] = np.nan |
|
252 |
+ self.fx = fx |
|
253 |
+ |
|
254 |
+ self.c_old = np.zeros(fx.shape) |
|
255 |
+ c_diff = norm(self.c[self.depth] - self.c[2]) |
|
256 |
+ |
|
257 |
+ a, b = self.a, self.b |
|
258 |
+ self.err = (b - a) * c_diff |
|
259 |
+ self.igral = (b - a) * self.c[self.depth, 0] / sqrt(2) |
|
260 |
+ |
|
261 |
+ if c_diff / norm(self.c[3]) > 0.1: |
|
262 |
+ self.err = max(self.err, (b-a) * norm(self.c[3])) |
|
263 |
+ |
|
264 |
+ def process_split(self, ndiv_max=20): |
|
265 |
+ fx = np.array(self.done_points.values()) |
|
266 |
+ self.c[self.depth, :ns[self.depth]] = c_new = _calc_coeffs(fx, self.depth) |
|
267 |
+ self.fx = fx |
|
268 |
+ |
|
269 |
+ parent = self.parent |
|
270 |
+ self.c_old = self.T @ parent.c[parent.depth] |
|
271 |
+ c_diff = norm(self.c[self.depth] - self.c_old) |
|
272 |
+ |
|
273 |
+ a, b = self.a, self.b |
|
274 |
+ self.err = (b - a) * c_diff |
|
275 |
+ self.igral = (b - a) * self.c[self.depth, 0] / sqrt(2) |
|
276 |
+ |
|
277 |
+ self.ndiv = (parent.ndiv |
|
278 |
+ + (abs(parent.c[0, 0]) > 0 |
|
279 |
+ and self.c[0, 0] / parent.c[0, 0] > 2)) |
|
280 |
+ |
|
281 |
+ if self.ndiv > ndiv_max and 2*self.ndiv > self.rdepth: |
|
282 |
+ raise DivergentIntegralError(self) |
|
283 |
+ |
|
284 |
+ def process_refine(self): |
|
285 |
+ fx = np.array(self.done_points.values()) |
|
286 |
+ self.c[self.depth, :ns[self.depth]] = c_new = _calc_coeffs(fx, self.depth) |
|
287 |
+ self.fx = fx |
|
288 |
+ |
|
289 |
+ c_diff = norm(self.c[self.depth - 1] - self.c[self.depth]) |
|
290 |
+ |
|
291 |
+ a, b = self.a, self.b |
|
292 |
+ self.err = (b - a) * c_diff |
|
293 |
+ self.igral = (b - a) * c_new[0] / sqrt(2) |
|
294 |
+ nc = norm(c_new) |
|
295 |
+ force_split = nc > 0 and c_diff / nc > 0.1 |
|
296 |
+ return force_split |
|
297 |
+ |
|
298 |
+ def __repr__(self): |
|
299 |
+ lst = [ |
|
300 |
+ '(a, b)=({:.5f}, {:.5f})'.format(self.a, self.b), |
|
301 |
+ 'depth={}'.format(self.depth), |
|
302 |
+ 'rdepth={}'.format(self.rdepth), |
|
303 |
+ 'err={:.5E}'.format(self.err), |
|
304 |
+ 'igral={:.5E}'.format(self.igral if self.igral else 0), |
|
305 |
+ 'est_err={:.5E}'.format(self.est_err), |
|
306 |
+ 'discard={}'.format(self.discard), |
|
307 |
+ ] |
|
308 |
+ return ' '.join(lst) |
|
309 |
+ |
|
310 |
+ def equal(self, other, *, verbose=False): |
|
311 |
+ """Note: Implementing __eq__ breaks SortedContainers in some way.""" |
|
312 |
+ if not self.complete: |
|
313 |
+ if verbose: |
|
314 |
+ print('Interval {} is not complete.'.format(self)) |
|
315 |
+ return False |
|
316 |
+ |
|
317 |
+ slots = set(self.__slots__).intersection(other.__slots__) |
|
318 |
+ same_slots = [] |
|
319 |
+ for s in slots: |
|
320 |
+ a = getattr(self, s) |
|
321 |
+ b = getattr(other, s) |
|
322 |
+ is_equal = np.allclose(a, b, rtol=0, atol=eps, equal_nan=True) |
|
323 |
+ if verbose and not is_equal: |
|
324 |
+ print('self.{} - other.{} = {}'.format(s, s, a - b)) |
|
325 |
+ same_slots.append(is_equal) |
|
326 |
+ |
|
327 |
+ return all(same_slots) |
|
328 |
+ |
|
329 |
+ |
|
330 |
+class IntegratorLearner(BaseLearner): |
|
331 |
+ |
|
332 |
+ def __init__(self, function, bounds, tol): |
|
333 |
+ """ |
|
334 |
+ Parameters |
|
335 |
+ ---------- |
|
336 |
+ function : callable: X → Y |
|
337 |
+ The function to learn. |
|
338 |
+ bounds : pair of reals |
|
339 |
+ The bounds of the interval on which to learn 'function'. |
|
340 |
+ tol : float |
|
341 |
+ Relative tolerance of the error to the integral, this means that the |
|
342 |
+ learner is done when: `tol > err / abs(igral)`. |
|
343 |
+ |
|
344 |
+ Attributes |
|
345 |
+ ---------- |
|
346 |
+ complete_branches : list of intervals |
|
347 |
+ The intervals that can be used in the determination of the integral. |
|
348 |
+ nr_points : int |
|
349 |
+ The total number of evaluated points. |
|
350 |
+ igral : float |
|
351 |
+ The integral value in `self.bounds`. |
|
352 |
+ err : float |
|
353 |
+ The absolute error associated with `self.igral`. |
|
354 |
+ |
|
355 |
+ Methods |
|
356 |
+ ------- |
|
357 |
+ done : bool |
|
358 |
+ Returns whether the `tol` has been reached. |
|
359 |
+ plot : hv.Scatter |
|
360 |
+ Plots all the points that are evaluated. |
|
361 |
+ """ |
|
362 |
+ self.function = function |
|
363 |
+ self.bounds = bounds |
|
364 |
+ self.tol = tol |
|
365 |
+ self.priority_split = [] |
|
366 |
+ self.ivals = SortedSet([], key=attrgetter('err')) |
|
367 |
+ self.done_points = {} |
|
368 |
+ self.not_done_points = set() |
|
369 |
+ self._stack = [] |
|
370 |
+ self._err_final = 0 |
|
371 |
+ self._igral_final = 0 |
|
372 |
+ self.x_mapping = defaultdict(lambda: SortedSet([], key=attrgetter('rdepth'))) |
|
373 |
+ ival, points = Interval.make_first(*self.bounds, self.tol) |
|
374 |
+ self._update_ival(ival, points) |
|
375 |
+ self.first_ival = ival |
|
376 |
+ self._complete_branches = [] |
|
377 |
+ |
|
378 |
+ def add_point(self, point, value): |
|
379 |
+ if point not in self.x_mapping: |
|
380 |
+ raise ValueError("Point {} doesn't belong to any interval" |
|
381 |
+ .format(point)) |
|
382 |
+ self.done_points[point] = value |
|
383 |
+ self.not_done_points.discard(point) |
|
384 |
+ |
|
385 |
+ # Select the intervals that have this point |
|
386 |
+ ivals = self.x_mapping[point] |
|
387 |
+ for ival in ivals: |
|
388 |
+ ival.done_points[point] = value |
|
389 |
+ if ival.complete and not ival.done and not ival.discard: |
|
390 |
+ in_ivals = ival in self.ivals |
|
391 |
+ self.ivals.discard(ival) |
|
392 |
+ force_split, remove = ival.complete_process() |
|
393 |
+ if remove: |
|
394 |
+ self._err_final += ival.err |
|
395 |
+ self._igral_final += ival.igral |
|
396 |
+ elif in_ivals: |
|
397 |
+ self.ivals.add(ival) |
|
398 |
+ |
|
399 |
+ if force_split: |
|
400 |
+ # Make sure that at the next execution of _fill_stack(), |
|
401 |
+ # this ival will be split. |
|
402 |
+ self.priority_split.append(ival) |
|
403 |
+ |
|
404 |
+ def _update_ival(self, ival, points): |
|
405 |
+ assert not ival.discard |
|
406 |
+ for x in points: |
|
407 |
+ # Update the mappings |
|
408 |
+ self.x_mapping[x].add(ival) |
|
409 |
+ if x in self.done_points: |
|
410 |
+ self.add_point(x, self.done_points[x]) |
|
411 |
+ elif x not in self.not_done_points: |
|
412 |
+ self.not_done_points.add(x) |
|
413 |
+ self._stack.append(x) |
|
414 |
+ |
|
415 |
+ # Add the new interval to the err sorted set |
|
416 |
+ self.ivals.add(ival) |
|
417 |
+ |
|
418 |
+ def set_discard(self, ival): |
|
419 |
+ def _discard(ival): |
|
420 |
+ ival.discard = True |
|
421 |
+ self.ivals.discard(ival) |
|
422 |
+ for point in self._stack: |
|
423 |
+ # XXX: is this check worth it? |
|
424 |
+ if all(i.discard for i in self.x_mapping[point]): |
|
425 |
+ self._stack.remove(point) |
|
426 |
+ for child in ival.children: |
|
427 |
+ _discard(child) |
|
428 |
+ _discard(ival) |
|
429 |
+ |
|
430 |
+ def choose_points(self, n): |
|
431 |
+ points, loss_improvements = self.pop_from_stack(n) |
|
432 |
+ n_left = n - len(points) |
|
433 |
+ while n_left > 0: |
|
434 |
+ assert n_left >= 0 |
|
435 |
+ self._fill_stack() |
|
436 |
+ new_points, new_loss_improvements = self.pop_from_stack(n_left) |
|
437 |
+ points += new_points |
|
438 |
+ loss_improvements += new_loss_improvements |
|
439 |
+ n_left -= len(new_points) |
|
440 |
+ |
|
441 |
+ return points, loss_improvements |
|
442 |
+ |
|
443 |
+ def pop_from_stack(self, n): |
|
444 |
+ points = self._stack[:n] |
|
445 |
+ self._stack = self._stack[n:] |
|
446 |
+ loss_improvements = [max(ival.err for ival in self.x_mapping[x]) |
|
447 |
+ for x in points] |
|
448 |
+ return points, loss_improvements |
|
449 |
+ |
|
450 |
+ def remove_unfinished(self): |
|
451 |
+ pass |
|
452 |
+ |
|
453 |
+ def _fill_stack(self): |
|
454 |
+ # XXX: to-do if all the ivals have err=inf, take the interval |
|
455 |
+ # with the lowest rdepth and no children. |
|
456 |
+ if self.priority_split: |
|
457 |
+ ival = self.priority_split.pop() |
|
458 |
+ force_split = True |
|
459 |
+ if ival.children: |
|
460 |
+ # If the interval already has children (which is the result of an |
|
461 |
+ # earlier refinement when the data of the interval wasn't known |
|
462 |
+ # yet,) then discard the children and propagate it down. |
|
463 |
+ for child in ival.children: |
|
464 |
+ self.set_discard(child) |
|
465 |
+ else: |
|
466 |
+ ival = self.ivals[-1] |
|
467 |
+ force_split = False |
|
468 |
+ assert not ival.children |
|
469 |
+ |
|
470 |
+ # Remove the interval from the err sorted set because we're going to |
|
471 |
+ # split or refine this interval |
|
472 |
+ self.ivals.discard(ival) |
|
473 |
+ |
|
474 |
+ # If the interval points are smaller than machine precision, then |
|
475 |
+ # don't continue with splitting or refining. |
|
476 |
+ points = ival.points(ival.depth) |
|
477 |
+ reached_machine_tol = points[1] <= points[0] or points[-1] <= points[-2] |
|
478 |
+ |
|
479 |
+ if (not ival.discard) and (not reached_machine_tol): |
|
480 |
+ if ival.depth == 3 or force_split: |
|
481 |
+ # Always split when depth is maximal or if refining didn't help |
|
482 |
+ ivals_new = ival.split() |
|
483 |
+ for ival_new in ivals_new: |
|
484 |
+ points = ival_new.points(depth=0) |
|
485 |
+ self._update_ival(ival_new, points) |
|
486 |
+ else: |
|
487 |
+ # Refine |
|
488 |
+ ival_new, points = ival.refine() |
|
489 |
+ self._update_ival(ival_new, points) |
|
490 |
+ |
|
491 |
+ # Remove the smallest element if number of intervals is larger than 1000 |
|
492 |
+ if len(self.ivals) > 1000: |
|
493 |
+ self.ivals.pop(0) |
|
494 |
+ |
|
495 |
+ return self._stack |
|
496 |
+ |
|
497 |
+ @staticmethod |
|
498 |
+ def deepest_complete_branches(ival): |
|
499 |
+ """Finds the deepest complete set of intervals starting from `ival`.""" |
|
500 |
+ complete_branches = [] |
|
501 |
+ def _find_deepest(ival): |
|
502 |
+ children_err = (sum(i.est_err for i in ival.children) |
|
503 |
+ if ival.children else np.inf) |
|
504 |
+ if np.isfinite(ival.est_err) and np.isinf(children_err): |
|
505 |
+ complete_branches.append(ival) |
|
506 |
+ else: |
|
507 |
+ for i in ival.children: |
|
508 |
+ _find_deepest(i) |
|
509 |
+ _find_deepest(ival) |
|
510 |
+ return complete_branches |
|
511 |
+ |
|
512 |
+ @property |
|
513 |
+ def complete_branches(self): |
|
514 |
+ if not self.first_ival.done: |
|
515 |
+ return [] |
|
516 |
+ |
|
517 |
+ if not self._complete_branches: |
|
518 |
+ self._complete_branches.append(self.first_ival) |
|
519 |
+ |
|
520 |
+ complete_branches = [] |
|
521 |
+ for ival in self._complete_branches: |
|
522 |
+ if ival.discard: |
|
523 |
+ complete_branches = self.deepest_complete_branches(self.first_ival) |
|
524 |
+ break |
|
525 |
+ if not ival.children: |
|
526 |
+ # If the interval has no children, than is already is the deepest |
|
527 |
+ # complete branch. |
|
528 |
+ complete_branches.append(ival) |
|
529 |
+ else: |
|
530 |
+ complete_branches.extend(self.deepest_complete_branches(ival)) |
|
531 |
+ self._complete_branches = complete_branches |
|
532 |
+ return self._complete_branches |
|
533 |
+ |
|
534 |
+ @property |
|
535 |
+ def nr_points(self): |
|
536 |
+ return len(self.done_points) |
|
537 |
+ |
|
538 |
+ @property |
|
539 |
+ def igral(self): |
|
540 |
+ return sum(i.igral for i in self.complete_branches) |
|
541 |
+ |
|
542 |
+ @property |
|
543 |
+ def err(self): |
|
544 |
+ complete_branches = self.complete_branches |
|
545 |
+ if not complete_branches: |
|
546 |
+ return np.inf |
|
547 |
+ else: |
|
548 |
+ return sum(i.err for i in complete_branches) |
|
549 |
+ |
|
550 |
+ def done(self): |
|
551 |
+ err = self.err |
|
552 |
+ igral = self.igral |
|
553 |
+ return (err == 0 |
|
554 |
+ or err < abs(igral) * self.tol |
|
555 |
+ or (self._err_final > abs(igral) * self.tol |
|
556 |
+ and err - self._err_final < abs(igral) * self.tol) |
|
557 |
+ or not self.ivals) |
|
558 |
+ |
|
559 |
+ def loss(self, real=True): |
|
560 |
+ return abs(abs(self.igral) * self.tol - self.err) |
|
561 |
+ |
|
562 |
+ def equal(self, other, *, verbose=False): |
|
563 |
+ """Note: `other` is a list of ivals.""" |
|
564 |
+ if len(self.ivals) != len(other): |
|
565 |
+ if verbose: |
|
566 |
+ print('len(self.ivals)={} != len(other)={}'.format( |
|
567 |
+ len(self.ivals), len(other))) |
|
568 |
+ return False |
|
569 |
+ |
|
570 |
+ ivals = [sorted(i, key=attrgetter('a')) for i in [self.ivals, other]] |
|
571 |
+ return all(ival.equal(other_ival, verbose=verbose) |
|
572 |
+ for ival, other_ival in zip(*ivals)) |
|
573 |
+ |
|
574 |
+ def plot(self): |
|
575 |
+ return hv.Scatter(self.done_points) |
0 | 576 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,231 @@ |
1 |
+# -*- coding: utf-8 -*- |
|
2 |
+from copy import deepcopy |
|
3 |
+import heapq |
|
4 |
+import itertools |
|
5 |
+from math import sqrt |
|
6 |
+ |
|
7 |
+import holoviews as hv |
|
8 |
+import numpy as np |
|
9 |
+import sortedcontainers |
|
10 |
+ |
|
11 |
+from .base_learner import BaseLearner |
|
12 |
+ |
|
13 |
+class Learner1D(BaseLearner): |
|
14 |
+ """Learns and predicts a function 'f:ℝ → ℝ'. |
|
15 |
+ |
|
16 |
+ Parameters |
|
17 |
+ ---------- |
|
18 |
+ function : callable |
|
19 |
+ The function to learn. Must take a single real parameter and |
|
20 |
+ return a real number. |
|
21 |
+ bounds : pair of reals |
|
22 |
+ The bounds of the interval on which to learn 'function'. |
|
23 |
+ """ |
|
24 |
+ |
|
25 |
+ def __init__(self, function, bounds): |
|
26 |
+ self.function = function |
|
27 |
+ |
|
28 |
+ # A dict storing the loss function for each interval x_n. |
|
29 |
+ self.losses = {} |
|
30 |
+ self.losses_combined = {} |
|
31 |
+ |
|
32 |
+ self.data = sortedcontainers.SortedDict() |
|
33 |
+ self.data_interp = {} |
|
34 |
+ |
|
35 |
+ # A dict {x_n: [x_{n-1}, x_{n+1}]} for quick checking of local |
|
36 |
+ # properties. |
|
37 |
+ self.neighbors = sortedcontainers.SortedDict() |
|
38 |
+ self.neighbors_combined = sortedcontainers.SortedDict() |
|
39 |
+ |
|
40 |
+ # Bounding box [[minx, maxx], [miny, maxy]]. |
|
41 |
+ self._bbox = [list(bounds), [np.inf, -np.inf]] |
|
42 |
+ |
|
43 |
+ # Data scale (maxx - minx), (maxy - miny) |
|
44 |
+ self._scale = [bounds[1] - bounds[0], 0] |
|
45 |
+ self._oldscale = deepcopy(self._scale) |
|
46 |
+ |
|
47 |
+ self.bounds = list(bounds) |
|
48 |
+ |
|
49 |
+ @property |
|
50 |
+ def data_combined(self): |
|
51 |
+ return {**self.data, **self.data_interp} |
|
52 |
+ |
|
53 |
+ def interval_loss(self, x_left, x_right, data): |
|
54 |
+ """Calculate loss in the interval x_left, x_right. |
|
55 |
+ |
|
56 |
+ Currently returns the rescaled length of the interval. If one of the |
|
57 |
+ y-values is missing, returns 0 (so the intervals with missing data are |
|
58 |
+ never touched. This behavior should be improved later. |
|
59 |
+ """ |
|
60 |
+ y_right, y_left = data[x_right], data[x_left] |
|
61 |
+ if self._scale[1] == 0: |
|
62 |
+ return sqrt(((x_right - x_left) / self._scale[0])**2) |
|
63 |
+ else: |
|
64 |
+ return sqrt(((x_right - x_left) / self._scale[0])**2 + |
|
65 |
+ ((y_right - y_left) / self._scale[1])**2) |
|
66 |
+ |
|
67 |
+ def loss(self, real=True): |
|
68 |
+ losses = self.losses if real else self.losses_combined |
|
69 |
+ if len(losses) == 0: |
|
70 |
+ return float('inf') |
|
71 |
+ else: |
|
72 |
+ return max(losses.values()) |
|
73 |
+ |
|
74 |
+ def update_losses(self, x, data, neighbors, losses): |
|
75 |
+ x_lower, x_upper = neighbors[x] |
|
76 |
+ if x_lower is not None: |
|
77 |
+ losses[x_lower, x] = self.interval_loss(x_lower, x, data) |
|
78 |
+ if x_upper is not None: |
|
79 |
+ losses[x, x_upper] = self.interval_loss(x, x_upper, data) |
|
80 |
+ try: |
|
81 |
+ del losses[x_lower, x_upper] |
|
82 |
+ except KeyError: |
|
83 |
+ pass |
|
84 |
+ |
|
85 |
+ def find_neighbors(self, x, neighbors): |
|
86 |
+ pos = neighbors.bisect_left(x) |
|
87 |
+ x_lower = neighbors.iloc[pos-1] if pos != 0 else None |
|
88 |
+ x_upper = neighbors.iloc[pos] if pos != len(neighbors) else None |
|
89 |
+ return x_lower, x_upper |
|
90 |
+ |
|
91 |
+ def update_neighbors(self, x, neighbors): |
|
92 |
+ if x not in neighbors: # The point is new |
|
93 |
+ x_lower, x_upper = self.find_neighbors(x, neighbors) |
|
94 |
+ neighbors[x] = [x_lower, x_upper] |
|
95 |
+ neighbors.get(x_lower, [None, None])[1] = x |
|
96 |
+ neighbors.get(x_upper, [None, None])[0] = x |
|
97 |
+ |
|
98 |
+ def update_scale(self, x, y): |
|
99 |
+ self._bbox[0][0] = min(self._bbox[0][0], x) |
|
100 |
+ self._bbox[0][1] = max(self._bbox[0][1], x) |
|
101 |
+ if y is not None: |
|
102 |
+ self._bbox[1][0] = min(self._bbox[1][0], y) |
|
103 |
+ self._bbox[1][1] = max(self._bbox[1][1], y) |
|
104 |
+ |
|
105 |
+ self._scale = [self._bbox[0][1] - self._bbox[0][0], |
|
106 |
+ self._bbox[1][1] - self._bbox[1][0]] |
|
107 |
+ |
|
108 |
+ def add_point(self, x, y): |
|
109 |
+ real = y is not None |
|
110 |
+ |
|
111 |
+ if real: |
|
112 |
+ # Add point to the real data dict and pop from the unfinished |
|
113 |
+ # data_interp dict. |
|
114 |
+ self.data[x] = y |
|
115 |
+ try: |
|
116 |
+ del self.data_interp[x] |
|
117 |
+ except KeyError: |
|
118 |
+ pass |
|
119 |
+ else: |
|
120 |
+ # The keys of data_interp are the unknown points |
|
121 |
+ self.data_interp[x] = None |
|
122 |
+ |
|
123 |
+ # Update the neighbors |
|
124 |
+ self.update_neighbors(x, self.neighbors_combined) |
|
125 |
+ if real: |
|
126 |
+ self.update_neighbors(x, self.neighbors) |
|
127 |
+ |
|
128 |
+ # Update the scale |
|
129 |
+ self.update_scale(x, y) |
|
130 |
+ |
|
131 |
+ # Interpolate |
|
132 |
+ if not real: |
|
133 |
+ self.data_interp = self.interpolate() |
|
134 |
+ |
|
135 |
+ # Update the losses |
|
136 |
+ self.update_losses(x, self.data_combined, self.neighbors_combined, |
|
137 |
+ self.losses_combined) |
|
138 |
+ if real: |
|
139 |
+ self.update_losses(x, self.data, self.neighbors, self.losses) |
|
140 |
+ |
|
141 |
+ # If the scale has doubled, recompute all losses. |
|
142 |
+ if self._scale > self._oldscale * 2: |
|
143 |
+ self.losses = {xs: self.interval_loss(*xs, self.data) |
|
144 |
+ for xs in self.losses} |
|
145 |
+ self.losses_combined = {x: self.interval_loss(*x, |
|
146 |
+ self.data_combined) |
|
147 |
+ for x in self.losses_combined} |
|
148 |
+ self._oldscale = self._scale |
|
149 |
+ |
|
150 |
+ def choose_points(self, n, add_data=True): |
|
151 |
+ """Return n points that are expected to maximally reduce the loss.""" |
|
152 |
+ # Find out how to divide the n points over the intervals |
|
153 |
+ # by finding positive integer n_i that minimize max(L_i / n_i) subject |
|
154 |
+ # to a constraint that sum(n_i) = n + N, with N the total number of |
|
155 |
+ # intervals. |
|
156 |
+ |
|
157 |
+ # Return equally spaced points within each interval to which points |
|
158 |
+ # will be added. |
|
159 |
+ if n == 0: |
|
160 |
+ return [] |
|
161 |
+ |
|
162 |
+ # If the bounds have not been chosen yet, we choose them first. |
|
163 |
+ points = [] |
|
164 |
+ for bound in self.bounds: |
|
165 |
+ if bound not in self.data and bound not in self.data_interp: |
|
166 |
+ points.append(bound) |
|
167 |
+ |
|
168 |
+ # Ensure we return exactly 'n' points. |
|
169 |
+ if points: |
|
170 |
+ loss_improvements = [float('inf')] * n |
|
171 |
+ if n <= 2: |
|
172 |
+ points = points[:n] |
|
173 |
+ else: |
|
174 |
+ points = np.linspace(*self.bounds, n) |
|
175 |
+ else: |
|
176 |
+ def xs(x, n): |
|
177 |
+ if n == 1: |
|
178 |
+ return [] |
|
179 |
+ else: |
|
180 |
+ step = (x[1] - x[0]) / n |
|
181 |
+ return [x[0] + step * i for i in range(1, n)] |
|
182 |
+ |
|
183 |
+ # Calculate how many points belong to each interval. |
|
184 |
+ quals = [(-loss, x_range, 1) for (x_range, loss) in |
|
185 |
+ self.losses_combined.items()] |
|
186 |
+ |
|
187 |
+ heapq.heapify(quals) |
|
188 |
+ |
|
189 |
+ for point_number in range(n): |
|
190 |
+ quality, x, n = quals[0] |
|
191 |
+ heapq.heapreplace(quals, (quality * n / (n + 1), x, n + 1)) |
|
192 |
+ |
|
193 |
+ points = list(itertools.chain.from_iterable(xs(x, n) |
|
194 |
+ for quality, x, n in quals)) |
|
195 |
+ |
|
196 |
+ loss_improvements = list(itertools.chain.from_iterable( |
|
197 |
+ itertools.repeat(-quality, n) |
|
198 |
+ for quality, x, n in quals)) |
|
199 |
+ |
|
200 |
+ if add_data: |
|
201 |
+ self.add_data(points, itertools.repeat(None)) |
|
202 |
+ |
|
203 |
+ return points, loss_improvements |
|
204 |
+ |
|
205 |
+ def interpolate(self, extra_points=None): |
|
206 |
+ xs = list(self.data.keys()) |
|
207 |
+ ys = list(self.data.values()) |
|
208 |
+ xs_unfinished = list(self.data_interp.keys()) |
|
209 |
+ |
|
210 |
+ if extra_points is not None: |
|
211 |
+ xs_unfinished += extra_points |
|
212 |
+ |
|
213 |
+ if len(ys) == 0: |
|
214 |
+ interp_ys = (0,) * len(xs_unfinished) |
|
215 |
+ else: |
|
216 |
+ interp_ys = np.interp(xs_unfinished, xs, ys) |
|
217 |
+ |
|
218 |
+ data_interp = {x: y for x, y in zip(xs_unfinished, interp_ys)} |
|
219 |
+ |
|
220 |
+ return data_interp |
|
221 |
+ |
|
222 |
+ def plot(self): |
|
223 |
+ if self.data: |
|
224 |
+ return hv.Scatter(self.data) |
|
225 |
+ else: |
|
226 |
+ return hv.Scatter([]) |
|
227 |
+ |
|
228 |
+ def remove_unfinished(self): |
|
229 |
+ self.data_interp = {} |
|
230 |
+ self.losses_combined = deepcopy(self.losses) |
|
231 |
+ self.neighbors_combined = deepcopy(self.neighbors) |
0 | 232 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,303 @@ |
1 |
+# -*- coding: utf-8 -*- |
|
2 |
+import itertools |
|
3 |
+ |
|
4 |
+import holoviews as hv |
|
5 |
+import numpy as np |
|
6 |
+from scipy import interpolate, special |
|
7 |
+ |
|
8 |
+from .base_learner import BaseLearner |
|
9 |
+from .utils import restore |
|
10 |
+ |
|
11 |
+ |
|
12 |
+# Learner2D and helper functions. |
|
13 |
+ |
|
14 |
+def _losses_per_triangle(ip): |
|
15 |
+ tri = ip.tri |
|
16 |
+ vs = ip.values.ravel() |
|
17 |
+ |
|
18 |
+ gradients = interpolate.interpnd.estimate_gradients_2d_global( |
|
19 |
+ tri, vs, tol=1e-6) |
|
20 |
+ p = tri.points[tri.vertices] |
|
21 |
+ g = gradients[tri.vertices] |
|
22 |
+ v = vs[tri.vertices] |
|
23 |
+ n_points_per_triangle = p.shape[1] |
|
24 |
+ |
|
25 |
+ dev = 0 |
|
26 |
+ for j in range(n_points_per_triangle): |
|
27 |
+ vest = v[:, j, None] + ((p[:, :, :] - p[:, j, None, :]) * |
|
28 |
+ g[:, j, None, :]).sum(axis=-1) |
|
29 |
+ dev += abs(vest - v).max(axis=1) |
|
30 |
+ |
|
31 |
+ q = p[:, :-1, :] - p[:, -1, None, :] |
|
32 |
+ areas = abs(q[:, 0, 0] * q[:, 1, 1] - q[:, 0, 1] * q[:, 1, 0]) |
|
33 |
+ areas /= special.gamma(n_points_per_triangle) |
|
34 |
+ areas = np.sqrt(areas) |
|
35 |
+ |
|
36 |
+ vs_scale = vs[tri.vertices].ptp() |
|
37 |
+ if vs_scale != 0: |
|
38 |
+ dev /= vs_scale |
|
39 |
+ |
|
40 |
+ return dev * areas |
|
41 |
+ |
|
42 |
+class Learner2D(BaseLearner): |
|
43 |
+ """Learns and predicts a function 'f: ℝ^2 → ℝ'. |
|
44 |
+ |
|
45 |
+ Parameters |
|
46 |
+ ---------- |
|
47 |
+ function : callable |
|
48 |
+ The function to learn. Must take a tuple of two real |
|
49 |
+ parameters and return a real number. |
|
50 |
+ bounds : list of 2-tuples |
|
51 |
+ A list ``[(a1, b1), (a2, b2)]`` containing bounds, |
|
52 |
+ one per dimension. |
|
53 |
+ |
|
54 |
+ Attributes |
|
55 |
+ ---------- |
|
56 |
+ points_combined |
|
57 |
+ Sample points so far including the unknown interpolated ones. |
|
58 |
+ values_combined |
|
59 |
+ Sampled values so far including the unknown interpolated ones. |
|
60 |
+ points |
|
61 |
+ Sample points so far with real results. |
|
62 |
+ values |
|
63 |
+ Sampled values so far with real results. |
|
64 |
+ |
|
65 |
+ Notes |
|
66 |
+ ----- |
|
67 |
+ Adapted from an initial implementation by Pauli Virtanen. |
|
68 |
+ |
|
69 |
+ The sample points are chosen by estimating the point where the |
|
70 |
+ linear and cubic interpolants based on the existing points have |
|
71 |
+ maximal disagreement. This point is then taken as the next point |
|
72 |
+ to be sampled. |
|
73 |
+ |
|
74 |
+ In practice, this sampling protocol results to sparser sampling of |
|
75 |
+ smooth regions, and denser sampling of regions where the function |
|
76 |
+ changes rapidly, which is useful if the function is expensive to |
|
77 |
+ compute. |
|
78 |
+ |
|
79 |
+ This sampling procedure is not extremely fast, so to benefit from |
|
80 |
+ it, your function needs to be slow enough to compute. |
|
81 |
+ """ |
|
82 |
+ |
|
83 |
+ def __init__(self, function, bounds): |
|
84 |
+ self.ndim = len(bounds) |
|
85 |
+ if self.ndim != 2: |
|
86 |
+ raise ValueError("Only 2-D sampling supported.") |
|
87 |
+ self.bounds = tuple((float(a), float(b)) for a, b in bounds) |
|
88 |
+ self._points = np.zeros([100, self.ndim]) |
|
89 |
+ self._values = np.zeros([100], dtype=float) |
|
90 |
+ self._stack = [] |
|
91 |
+ self._interp = {} |
|
92 |
+ |
|
93 |
+ xy_mean = np.mean(self.bounds, axis=1) |
|
94 |
+ xy_scale = np.ptp(self.bounds, axis=1) |
|
95 |
+ |
|
96 |
+ def scale(points): |
|
97 |
+ return (points - xy_mean) / xy_scale |
|
98 |
+ |
|
99 |
+ def unscale(points): |
|
100 |
+ return points * xy_scale + xy_mean |
|
101 |
+ |
|
102 |
+ self.scale = scale |
|
103 |
+ self.unscale = unscale |
|
104 |
+ |
|
105 |
+ # Keeps track till which index _points and _values are filled |
|
106 |
+ self.n = 0 |
|
107 |
+ |
|
108 |
+ self._bounds_points = list(itertools.product(*bounds)) |
|
109 |
+ |
|
110 |
+ # Add the loss improvement to the bounds in the stack |
|
111 |
+ self._stack = [(*p, np.inf) for p in self._bounds_points] |
|
112 |
+ |
|
113 |
+ self.function = function |
|
114 |
+ |
|
115 |
+ @property |
|
116 |
+ def points_combined(self): |
|
117 |
+ return self._points[:self.n] |
|
118 |
+ |
|
119 |
+ @property |
|
120 |
+ def values_combined(self): |
|
121 |
+ return self._values[:self.n] |
|
122 |
+ |
|
123 |
+ @property |
|
124 |
+ def points(self): |
|
125 |
+ return np.delete(self.points_combined, |
|
126 |
+ list(self._interp.values()), axis=0) |
|
127 |
+ |
|
128 |
+ @property |
|
129 |
+ def values(self): |
|
130 |
+ return np.delete(self.values_combined, |
|
131 |
+ list(self._interp.values()), axis=0) |
|
132 |
+ |
|
133 |
+ def ip(self): |
|
134 |
+ points = self.scale(self.points) |
|
135 |
+ return interpolate.LinearNDInterpolator(points, self.values) |
|
136 |
+ |
|
137 |
+ @property |
|
138 |
+ def n_real(self): |
|
139 |
+ return self.n - len(self._interp) |
|
140 |
+ |
|
141 |
+ def ip_combined(self): |
|
142 |
+ points = self.scale(self.points_combined) |
|
143 |
+ values = self.values_combined |
|
144 |
+ |
|
145 |
+ # Interpolate the unfinished points |
|
146 |
+ if self._interp: |
|
147 |
+ n_interp = list(self._interp.values()) |
|
148 |
+ bounds_are_done = not any(p in self._interp |
|
149 |
+ for p in self._bounds_points) |
|
150 |
+ if bounds_are_done: |
|
151 |
+ values[n_interp] = self.ip()(points[n_interp]) |
|
152 |
+ else: |
|
153 |
+ # It is important not to return exact zeros because |
|
154 |
+ # otherwise the algo will try to add the same point |
|
155 |
+ # to the stack each time. |
|
156 |
+ values[n_interp] = np.random.rand(len(n_interp)) * 1e-15 |
|
157 |
+ |
|
158 |
+ return interpolate.LinearNDInterpolator(points, values) |
|
159 |
+ |
|
160 |
+ def add_point(self, point, value): |
|
161 |
+ nmax = self.values_combined.shape[0] |
|
162 |
+ if self.n >= nmax: |
|
163 |
+ self._values = np.resize(self._values, [2*nmax + 10]) |
|
164 |
+ self._points = np.resize(self._points, [2*nmax + 10, self.ndim]) |
|
165 |
+ |
|
166 |
+ point = tuple(point) |
|
167 |
+ |
|
168 |
+ # When the point is not evaluated yet, add an entry to self._interp |
|
169 |
+ # that saves the point and index. |
|
170 |
+ if value is None: |
|
171 |
+ self._interp[point] = self.n |
|
172 |
+ old_point = False |
|
173 |
+ else: |
|
174 |
+ old_point = point in self._interp |
|
175 |
+ |
|
176 |
+ # If the point is new add it a new value to _points and _values, |
|
177 |
+ # otherwise get the index of the value that is being replaced. |
|
178 |
+ if old_point: |
|
179 |
+ n = self._interp.pop(point) |
|
180 |
+ else: |
|
181 |
+ n = self.n |
|
182 |
+ self.n += 1 |
|
183 |
+ |
|
184 |
+ self._points[n] = point |
|
185 |
+ self._values[n] = value |
|
186 |
+ |
|
187 |
+ # Remove the point if in the stack. |
|
188 |
+ for i, (*_point, _) in enumerate(self._stack): |
|
189 |
+ if point == tuple(_point): |
|
190 |
+ self._stack.pop(i) |
|
191 |
+ break |
|
192 |
+ |
|
193 |
+ def _fill_stack(self, stack_till=None): |
|
194 |
+ if stack_till is None: |
|
195 |
+ stack_till = 1 |
|
196 |
+ |
|
197 |
+ if self.values_combined.shape[0] < self.ndim + 1: |
|
198 |
+ raise ValueError("too few points...") |
|
199 |
+ |
|
200 |
+ # Interpolate |
|
201 |
+ ip = self.ip_combined() |
|
202 |
+ tri = ip.tri |
|
203 |
+ |
|
204 |
+ losses = _losses_per_triangle(ip) |
|
205 |
+ |
|
206 |
+ def point_exists(p): |
|
207 |
+ eps = np.finfo(float).eps * self.points_combined.ptp() * 100 |
|
208 |
+ if abs(p - self.points_combined).sum(axis=1).min() < eps: |
|
209 |
+ return True |
|
210 |
+ if self._stack: |
|
211 |
+ _stack_points, _ = self._split_stack() |
|
212 |
+ if abs(p - np.asarray(_stack_points)).sum(axis=1).min() < eps: |
|
213 |
+ return True |
|
214 |
+ return False |
|
215 |
+ |
|
216 |
+ for j, _ in enumerate(losses): |
|
217 |
+ # Estimate point of maximum curvature inside the simplex |
|
218 |
+ jsimplex = np.argmax(losses) |
|
219 |
+ p = tri.points[tri.vertices[jsimplex]] |
|
220 |
+ point_new = self.unscale(p.mean(axis=-2)) |
|
221 |
+ |
|
222 |
+ # XXX: not sure whether this is necessary it was there |
|
223 |
+ # originally. |
|
224 |
+ point_new = np.clip(point_new, *zip(*self.bounds)) |
|
225 |
+ |
|
226 |
+ # Check if it is really new |
|
227 |
+ if point_exists(point_new): |
|
228 |
+ losses[jsimplex] = 0 |
|
229 |
+ continue |
|
230 |
+ |
|
231 |
+ # Add to stack |
|
232 |
+ self._stack.append((*point_new, losses[jsimplex])) |
|
233 |
+ |
|
234 |
+ if len(self._stack) >= stack_till: |
|
235 |
+ break |
|
236 |
+ else: |
|
237 |
+ losses[jsimplex] = 0 |
|
238 |
+ |
|
239 |
+ def _split_stack(self, n=None): |
|
240 |
+ points = [] |
|
241 |
+ loss_improvements = [] |
|
242 |
+ for *point, loss_improvement in self._stack[:n]: |
|
243 |
+ points.append(point) |
|
244 |
+ loss_improvements.append(loss_improvement) |
|
245 |
+ return points, loss_improvements |
|
246 |
+ |
|
247 |
+ def _choose_and_add_points(self, n): |
|
248 |
+ if n <= len(self._stack): |
|
249 |
+ points, loss_improvements = self._split_stack(n) |
|
250 |
+ self.add_data(points, itertools.repeat(None)) |
|
251 |
+ else: |
|
252 |
+ points = [] |
|
253 |
+ loss_improvements = [] |
|
254 |
+ n_left = n |
|
255 |
+ while n_left > 0: |
|
256 |
+ # The while loop is needed because `stack_till` could be larger |
|
257 |
+ # than the number of triangles between the points. Therefore |
|
258 |
+ # it could fill up till a length smaller than `stack_till`. |
|
259 |
+ if self.n >= 2**self.ndim: |
|
260 |
+ # Only fill the stack if no more bounds left in _stack |
|
261 |
+ self._fill_stack(stack_till=n_left) |
|
262 |
+ new_points, new_loss_improvements = self._split_stack(n_left) |
|
263 |
+ points += new_points |
|
264 |
+ loss_improvements += new_loss_improvements |
|
265 |
+ self.add_data(new_points, itertools.repeat(None)) |
|
266 |
+ n_left -= len(new_points) |
|
267 |
+ |
|
268 |
+ return points, loss_improvements |
|
269 |
+ |
|
270 |
+ def choose_points(self, n, add_data=True): |
|
271 |
+ if not add_data: |
|
272 |
+ with restore(self): |
|
273 |
+ return self._choose_and_add_points(n) |
|
274 |
+ else: |
|
275 |
+ return self._choose_and_add_points(n) |
|
276 |
+ |
|
277 |
+ def loss(self, real=True): |
|
278 |
+ n = self.n_real if real else self.n |
|
279 |
+ bounds_are_not_done = any(p in self._interp |
|
280 |
+ for p in self._bounds_points) |
|
281 |
+ if n <= 4 or bounds_are_not_done: |
|
282 |
+ return np.inf |
|
283 |
+ ip = self.ip() if real else self.ip_combined() |
|
284 |
+ losses = _losses_per_triangle(ip) |
|
285 |
+ return losses.max() |
|
286 |
+ |
|
287 |
+ def remove_unfinished(self): |
|
288 |
+ self._points = self.points.copy() |
|
289 |
+ self._values = self.values.copy() |
|
290 |
+ self.n -= len(self._interp) |
|
291 |
+ self._interp = {} |
|
292 |
+ |
|
293 |
+ def plot(self, n_x=201, n_y=201): |
|
294 |
+ x, y = self.bounds |
|
295 |
+ lbrt = x[0], y[0], x[1], y[1] |
|
296 |
+ if self.n_real >= 4: |
|
297 |
+ x = np.linspace(-0.5, 0.5, n_x) |
|
298 |
+ y = np.linspace(-0.5, 0.5, n_y) |
|
299 |
+ ip = self.ip() |
|
300 |
+ z = ip(x[:, None], y[None, :]) |
|
301 |
+ return hv.Image(np.rot90(z), bounds=lbrt) |
|
302 |
+ else: |
|
303 |
+ return hv.Image(np.zeros((2, 2)), bounds=lbrt) |
0 | 304 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,11 @@ |
1 |
+# -*- coding: utf-8 -*- |
|
2 |
+from contextlib import contextmanager |
|
3 |
+ |
|
4 |
+@contextmanager |
|
5 |
+def restore(*learners): |
|
6 |
+ states = [learner.__getstate__() for learner in learners] |
|
7 |
+ try: |
|
8 |
+ yield |
|
9 |
+ finally: |
|
10 |
+ for state, learner in zip(states, learners): |
|
11 |
+ learner.__setstate__(state) |
0 | 12 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,541 @@ |
1 |
+# Copyright 2010 Pedro Gonnet |
|
2 |
+# Copyright 2017 Christoph Groth |
|
3 |
+ |
|
4 |
+import warnings |
|
5 |
+from fractions import Fraction as Frac |
|
6 |
+from collections import defaultdict |
|
7 |
+import numpy as np |
|
8 |
+from numpy.testing import assert_allclose |
|
9 |
+from numpy.linalg import cond |
|
10 |
+from scipy.linalg import norm, inv |
|
11 |
+ |
|
12 |
+ |
|
13 |
+eps = np.spacing(1) |
|
14 |
+ |
|
15 |
+def legendre(n): |
|
16 |
+ """Return the first n Legendre polynomials. |
|
17 |
+ |
|
18 |
+ The polynomials have *standard* normalization, i.e. |
|
19 |
+ int_{-1}^1 dx L_n(x) L_m(x) = delta(m, n) * 2 / (2 * n + 1). |
|
20 |
+ |
|
21 |
+ The return value is a list of list of fraction.Fraction instances. |
|
22 |
+ """ |
|
23 |
+ result = [[Frac(1)], [Frac(0), Frac(1)]] |
|
24 |
+ if n <= 2: |
|
25 |
+ return result[:n] |
|
26 |
+ for i in range(2, n): |
|
27 |
+ # Use Bonnet's recursion formula. |
|
28 |
+ new = (i + 1) * [Frac(0)] |
|
29 |
+ new[1:] = (r * (2*i - 1) for r in result[-1]) |
|
30 |
+ new[:-2] = (n - r * (i - 1) for n, r in zip(new[:-2], result[-2])) |
|
31 |
+ new[:] = (n / i for n in new) |
|
32 |
+ result.append(new) |
|
33 |
+ return result |
|
34 |
+ |
|
35 |
+ |
|
36 |
+def newton(n): |
|
37 |
+ """Compute the monomial coefficients of the Newton polynomial over the |
|
38 |
+ nodes of the n-point Clenshaw-Curtis quadrature rule. |
|
39 |
+ """ |
|
40 |
+ # The nodes of the Clenshaw-Curtis rule are x_i = -cos(i * Pi / (n-1)). |
|
41 |
+ # Here, we calculate the coefficients c_i such that sum_i c_i * x^i |
|
42 |
+ # = prod_i (x - x_i). The coefficients are thus sums of products of |
|
43 |
+ # cosines. |
|
44 |
+ # |
|
45 |
+ # This routine uses the relation |
|
46 |
+ # cos(a) cos(b) = (cos(a + b) + cos(a - b)) / 2 |
|
47 |
+ # to efficiently calculate the coefficients. |
|
48 |
+ # |
|
49 |
+ # The dictionary 'terms' descibes the terms that make up the |
|
50 |
+ # monomial coefficients. Each item ((d, a), m) corresponds to a |
|
51 |
+ # term m * cos(a * Pi / n) to be added to prefactor of the |
|
52 |
+ # monomial x^(n-d). |
|
53 |
+ |
|
54 |
+ mod = 2 * (n-1) |
|
55 |
+ terms = defaultdict(int) |
|
56 |
+ terms[0, 0] += 1 |
|
57 |
+ |
|
58 |
+ for i in range(n): |
|
59 |
+ newterms = [] |
|
60 |
+ for (d, a), m in terms.items(): |
|
61 |
+ for b in [i, -i]: |
|
62 |
+ # In order to reduce the number of terms, cosine |
|
63 |
+ # arguments are mapped back to the inteval [0, pi/2). |
|
64 |
+ arg = (a + b) % mod |
|
65 |
+ if arg > n-1: |
|
66 |
+ arg = mod - arg |
|
67 |
+ if arg >= n // 2: |
|
68 |
+ if n % 2 and arg == n // 2: |
|
69 |
+ # Zero term: ignore |
|
70 |
+ continue |
|
71 |
+ newterms.append((d + 1, n - 1 - arg, -m)) |
|
72 |
+ else: |
|
73 |
+ newterms.append((d + 1, arg, m)) |
|
74 |
+ for d, s, m in newterms: |
|
75 |
+ terms[d, s] += m |
|
76 |
+ |
|
77 |
+ c = (n + 1) * [0] |
|
78 |
+ for (d, a), m in terms.items(): |
|
79 |
+ if m and a != 0: |
|
80 |
+ raise ValueError("Newton polynomial cannot be represented exactly.") |
|
81 |
+ c[n - d] += m |
|
82 |
+ # The check could be removed and the above line replaced by |
|
83 |
+ # the following, but then the result would be no longer exact. |
|
84 |
+ # c[n - d] += m * np.cos(a * np.pi / (n - 1)) |
|
85 |
+ |
|
86 |
+ cf = np.array(c, float) |
|
87 |
+ assert all(int(cfe) == ce for cfe, ce in zip(cf, c)), 'Precision loss' |
|
88 |
+ |
|
89 |
+ cf /= 2.**np.arange(n, -1, -1) |
|
90 |
+ return cf |
|
91 |
+ |
|
92 |
+ |
|
93 |
+def scalar_product(a, b): |
|
94 |
+ """Compute the polynomial scalar product int_-1^1 dx a(x) b(x). |
|
95 |
+ |
|
96 |
+ The args must be sequences of polynomial coefficients. This |
|
97 |
+ function is careful to use the input data type for calculations. |
|
98 |
+ """ |
|
99 |
+ la = len(a) |
|
100 |
+ lc = len(b) + la + 1 |
|
101 |
+ |
|
102 |
+ # Compute the even coefficients of the product of a and b. |
|
103 |
+ c = lc * [a[0].__class__()] |
|
104 |
+ for i, bi in enumerate(b): |
|
105 |
+ if bi == 0: |
|
106 |
+ continue |
|
107 |
+ for j in range(i % 2, la, 2): |
|
108 |
+ c[i + j] += a[j] * bi |
|
109 |
+ |
|
110 |
+ # Calculate the definite integral from -1 to 1. |
|
111 |
+ return 2 * sum(c[i] / (i + 1) for i in range(0, lc, 2)) |
|
112 |
+ |
|
113 |
+ |
|
114 |
+def calc_bdef(ns): |
|
115 |
+ """Calculate the decompositions of Newton polynomials (over the nodes |
|
116 |
+ of the n-point Clenshaw-Curtis quadrature rule) in terms of |
|
117 |
+ Legandre polynomials. |
|
118 |
+ |
|
119 |
+ The parameter 'ns' is a sequence of numers of points of the |
|
120 |
+ quadrature rule. The return value is a corresponding sequence of |
|
121 |
+ normalized Legendre polynomial coefficients. |
|
122 |
+ """ |
|
123 |
+ legs = legendre(max(ns) + 1) |
|
124 |
+ result = [] |
|
125 |
+ for n in ns: |
|
126 |
+ poly = [] |
|
127 |
+ a = list(map(Frac, newton(n))) |
|
128 |
+ for b in legs[:n + 1]: |
|
129 |
+ igral = scalar_product(a, b) |
|
130 |
+ |
|
131 |
+ # Normalize & store. (The polynomials returned by |
|
132 |
+ # legendre() have standard normalization that is not |
|
133 |
+ # orthonormal.) |
|
134 |
+ poly.append(np.sqrt((2*len(b) - 1) / 2) * igral) |
|
135 |
+ |
|
136 |
+ result.append(np.array(poly)) |
|
137 |
+ return result |
|
138 |
+ |
|
139 |
+ |
|
140 |
+# Nodes and Newton polynomials. |
|
141 |
+n = (5, 9, 17, 33) |
|
142 |
+xi = [-np.cos(np.arange(n[j])/(n[j]-1) * np.pi) for j in range(4)] |
|
143 |
+# Make `xi` perfectly anti-symmetric, important for splitting the intervals |
|
144 |
+xi = [(row - row[::-1]) / 2 for row in xi] |
|
145 |
+b_def = calc_bdef(n) |
|
146 |
+ |
|
147 |
+ |
|
148 |
+def calc_V(xi, n): |
|
149 |
+ V = [np.ones(xi.shape), xi.copy()] |
|
150 |
+ for i in range(2, n): |
|
151 |
+ V.append((2*i-1) / i * xi * V[-1] - (i-1) / i * V[-2]) |
|
152 |
+ for i in range(n): |
|
153 |
+ V[i] *= np.sqrt(i + 0.5) |
|
154 |
+ return np.array(V).T |
|
155 |
+ |
|
156 |
+# compute the coefficients |
|
157 |
+V = [calc_V(*args) for args in zip(xi, n)] |
|
158 |
+V_inv = list(map(inv, V)) |
|
159 |
+Vcond = list(map(cond, V)) |
|
160 |
+ |
|
161 |
+# shift matrix |
|
162 |
+T_lr = [V_inv[3] @ calc_V((xi[3] + a) / 2, n[3]) for a in [-1, 1]] |
|
163 |
+ |
|
164 |
+# compute the integral |
|
165 |
+w = np.sqrt(0.5) # legendre |
|
166 |
+ |
|
167 |
+ |
|
168 |
+k = np.arange(n[3]) |
|
169 |
+alpha = np.sqrt((k+1)**2 / (2*k+1) / (2*k+3)) |
|
170 |
+gamma = np.concatenate([[0, 0], np.sqrt(k[2:]**2 / (4*k[2:]**2-1))]) |
|
171 |
+ |
|
172 |
+def _downdate(c, nans, depth): |
|
173 |
+ b = b_def[depth].copy() |
|
174 |
+ m = n[depth] - 1 |
|
175 |
+ for i in nans: |
|
176 |
+ b[m + 1] /= alpha[m] |
|
177 |
+ xii = xi[depth][i] |
|
178 |
+ b[m] = (b[m] + xii * b[m + 1]) / alpha[m - 1] |
|
179 |
+ for j in range(m - 1, 0, -1): |
|
180 |
+ b[j] = ((b[j] + xii * b[j + 1] - gamma[j + 1] * b[j + 2]) |
|
181 |
+ / alpha[j - 1]) |
|
182 |
+ b = b[1:] |
|
183 |
+ |
|
184 |
+ c[:m] -= c[m] / b[m] * b[:m] |
|
185 |
+ c[m] = 0 |
|
186 |
+ m -= 1 |
|
187 |
+ |
|
188 |
+ |
|
189 |
+def _zero_nans(fx): |
|
190 |
+ nans = [] |
|
191 |
+ for i in range(len(fx)): |
|
192 |
+ if not np.isfinite(fx[i]): |
|
193 |
+ nans.append(i) |
|
194 |
+ fx[i] = 0.0 |
|
195 |
+ return nans |
|
196 |
+ |
|
197 |
+ |
|
198 |
+def _calc_coeffs(fx, depth): |
|
199 |
+ """Caution: this function modifies fx.""" |
|
200 |
+ nans = _zero_nans(fx) |
|
201 |
+ c_new = V_inv[depth] @ fx |
|
202 |
+ if nans: |
|
203 |
+ fx[nans] = np.nan |
|
204 |
+ _downdate(c_new, nans, depth) |
|
205 |
+ return c_new |
|
206 |
+ |
|
207 |
+ |
|
208 |
+class DivergentIntegralError(ValueError): |
|
209 |
+ def __init__(self, msg, igral, err, nr_points): |
|
210 |
+ self.igral = igral |
|
211 |
+ self.err = err |
|
212 |
+ self.nr_points = nr_points |
|
213 |
+ super().__init__(msg) |
|
214 |
+ |
|
215 |
+ |
|
216 |
+class _Interval: |
|
217 |
+ __slots__ = ['a', 'b', 'c', 'c_old', 'fx', 'igral', 'err', 'tol', |
|
218 |
+ 'depth', 'rdepth', 'ndiv'] |
|
219 |
+ |
|
220 |
+ @classmethod |
|
221 |
+ def make_first(cls, f, a, b, tol): |
|
222 |
+ points = (a+b)/2 + (b-a) * xi[3] / 2 |
|
223 |
+ fx = f(points) |
|
224 |
+ nans = _zero_nans(fx) |
|
225 |
+ ival = _Interval() |
|
226 |
+ ival.c = np.zeros((4, n[3])) |
|
227 |
+ ival.c[3] = V_inv[3] @ fx |
|
228 |
+ ival.c[2, :n[2]] = V_inv[2] @ fx[:n[3]:2] |
|
229 |
+ fx[nans] = np.nan |
|
230 |
+ ival.fx = fx |
|
231 |
+ ival.c_old = np.zeros(fx.shape) |
|
232 |
+ ival.a = a |
|
233 |
+ ival.b = b |
|
234 |
+ ival.igral = (b-a) * w * ival.c[3, 0] |
|
235 |
+ c_diff = norm(ival.c[3] - ival.c[2]) |
|
236 |
+ ival.err = (b-a) * c_diff |
|
237 |
+ if c_diff / norm(ival.c[3]) > 0.1: |
|
238 |
+ ival.err = max( ival.err , (b-a) * norm(ival.c[3]) ) |
|
239 |
+ ival.tol = tol |
|
240 |
+ ival.depth = 3 |
|
241 |
+ ival.ndiv = 0 |
|
242 |
+ ival.rdepth = 1 |
|
243 |
+ return ival, points |
|
244 |
+ |
|
245 |
+ def split(self, f, ndiv_max=20): |
|
246 |
+ a = self.a |
|
247 |
+ b = self.b |
|
248 |
+ m = (a + b) / 2 |
|
249 |
+ f_center = self.fx[(len(self.fx)-1)//2] |
|
250 |
+ |
|
251 |
+ ivals = [] |
|
252 |
+ nr_points = 0 |
|
253 |
+ for aa, bb, f_left, f_right, T in [ |
|
254 |
+ (a, m, self.fx[0], f_center, T_lr[0]), |
|
255 |
+ (m, b, f_center, self.fx[-1], T_lr[1])]: |
|
256 |
+ ival = _Interval() |
|
257 |
+ ivals.append(ival) |
|
258 |
+ ival.a = aa |
|
259 |
+ ival.b = bb |
|
260 |
+ ival.tol = self.tol / np.sqrt(2) |
|
261 |
+ ival.depth = 0 |
|
262 |
+ ival.rdepth = self.rdepth + 1 |
|
263 |
+ ival.c = np.zeros((4, n[3])) |
|
264 |
+ fx = np.concatenate( |
|
265 |
+ ([f_left], |
|
266 |
+ f((aa + bb) / 2 + (bb - aa) * xi[0][1:-1] / 2), |
|
267 |
+ [f_right])) |
|
268 |
+ nr_points += n[0] - 2 |
|
269 |
+ |
|
270 |
+ ival.c[0, :n[0]] = c_new = _calc_coeffs(fx, 0) |
|
271 |
+ ival.fx = fx |
|
272 |
+ |
|
273 |
+ ival.c_old = T @ self.c[self.depth] |
|
274 |
+ c_diff = norm(ival.c[0] - ival.c_old) |
|
275 |
+ ival.err = (bb - aa) * c_diff |
|
276 |
+ ival.igral = (bb - aa) * ival.c[0, 0] * w |
|
277 |
+ ival.ndiv = (self.ndiv |
|
278 |
+ + (abs(self.c[0, 0]) > 0 |
|
279 |
+ and ival.c[0, 0] / self.c[0, 0] > 2)) |
|
280 |
+ if ival.ndiv > ndiv_max and 2*ival.ndiv > ival.rdepth: |
|
281 |
+ return (aa, bb, bb-aa), nr_points |
|
282 |
+ |
|
283 |
+ return ivals, nr_points |
|
284 |
+ |
|
285 |
+ def refine(self, f): |
|
286 |
+ """Increase degree of interval.""" |
|
287 |
+ self.depth = depth = self.depth + 1 |
|
288 |
+ a = self.a |
|
289 |
+ b = self.b |
|
290 |
+ points = (a+b)/2 + (b-a)*xi[depth]/2 |
|
291 |
+ fx = np.empty(n[depth]) |
|
292 |
+ fx[0:n[depth]:2] = self.fx |
|
293 |
+ fx[1:n[depth]-1:2] = f(points[1:n[depth]-1:2]) |
|
294 |
+ fx = fx[:n[depth]] |
|
295 |
+ self.c[depth, :n[depth]] = c_new = _calc_coeffs(fx, depth) |
|
296 |
+ self.fx = fx |
|
297 |
+ c_diff = norm(self.c[depth - 1] - self.c[depth]) |
|
298 |
+ self.err = (b-a) * c_diff |
|
299 |
+ self.igral = (b-a) * w * c_new[0] |
|
300 |
+ nc = norm(c_new) |
|
301 |
+ split = nc > 0 and c_diff / nc > 0.1 |
|
302 |
+ |
|
303 |
+ return points, split, n[depth] - n[depth - 1] |
|
304 |
+ |
|
305 |
+ |
|
306 |
+def algorithm_4 (f, a, b, tol): |
|
307 |
+ """ALGORITHM_4 evaluates an integral using adaptive quadrature. The |
|
308 |
+ algorithm uses Clenshaw-Curtis quadrature rules of increasing |
|
309 |
+ degree in each interval and bisects the interval if either the |
|
310 |
+ function does not appear to be smooth or a rule of maximum degree |
|
311 |
+ has been reached. The error estimate is computed from the L2-norm |
|
312 |
+ of the difference between two successive interpolations of the |
|
313 |
+ integrand over the nodes of the respective quadrature rules. |
|
314 |
+ |
|
315 |
+ INT = ALGORITHM_4 ( F , A , B , TOL ) approximates the integral of |
|
316 |
+ F in the interval [A,B] up to the relative tolerance TOL. The |
|
317 |
+ integrand F should accept a vector argument and return a vector |
|
318 |
+ result containing the integrand evaluated at each element of the |
|
319 |
+ argument. |
|
320 |
+ |
|
321 |
+ [INT,ERR,NR_POINTS] = ALGORITHM_4 ( F , A , B , TOL ) returns ERR, |
|
322 |
+ an estimate of the absolute integration error as well as |
|
323 |
+ NR_POINTS, the number of function values for which the integrand |
|
324 |
+ was evaluated. The value of ERR may be larger than the requested |
|
325 |
+ tolerance, indicating that the integration may have failed. |
|
326 |
+ |
|
327 |
+ ALGORITHM_4 halts with a warning if the integral is or appears to |
|
328 |
+ be divergent. |
|
329 |
+ |
|
330 |
+ Reference: "Increasing the Reliability of Adaptive Quadrature |
|
331 |
+ Using Explicit Interpolants", P. Gonnet, ACM Transactions on |
|
332 |
+ Mathematical Software, 37 (3), art. no. 26, 2008. |
|
333 |
+ """ |
|
334 |
+ |
|
335 |
+ # compute the first interval |
|
336 |
+ ival, points = _Interval.make_first(f, a, b, tol) |
|
337 |
+ ivals = [ival] |
|
338 |
+ |
|
339 |
+ # init some globals |
|
340 |
+ igral = ival.igral |
|
341 |
+ err = ival.err |
|
342 |
+ igral_final = 0 |
|
343 |
+ err_final = 0 |
|
344 |
+ i_max = 0 |
|
345 |
+ nr_points = n[3] |
|
346 |
+ |
|
347 |
+ # do we even need to go this way? |
|
348 |
+ if err < igral * tol: |
|
349 |
+ return igral, err, nr_points |
|
350 |
+ |
|
351 |
+ # main loop |
|
352 |
+ for _ in range(int(1e9)): |
|
353 |
+ if ivals[i_max].depth == 3: |
|
354 |
+ split = True |
|
355 |
+ else: |
|
356 |
+ points, split, nr_points_inc = ivals[i_max].refine(f) |
|
357 |
+ nr_points += nr_points_inc |
|
358 |
+ |
|
359 |
+ # can we safely ignore this interval? |
|
360 |
+ if (points[1] <= points[0] |
|
361 |
+ or points[-1] <= points[-2] |
|
362 |
+ or ivals[i_max].err < (abs(ivals[i_max].igral) * eps |
|
363 |
+ * Vcond[ivals[i_max].depth])): |
|
364 |
+ err_final += ivals[i_max].err |
|
365 |
+ igral_final += ivals[i_max].igral |
|
366 |
+ ivals[i_max] = ivals[-1] |
|
367 |
+ ivals.pop() |
|
368 |
+ elif split: |
|
369 |
+ result, nr_points_inc = ivals[i_max].split(f) |
|
370 |
+ nr_points += nr_points_inc |
|
371 |
+ if isinstance(result, tuple): |
|
372 |
+ igral = np.sign(igral) * np.inf |
|
373 |
+ raise DivergentIntegralError( |
|
374 |
+ 'Possibly divergent integral in the interval' |
|
375 |
+ ' [{}, {}]! (h={})'.format(*result), |
|
376 |
+ igral, err, nr_points) |
|
377 |
+ ivals.extend(result) |
|
378 |
+ ivals[i_max] = ivals.pop() |
|
379 |
+ |
|
380 |
+ # compute the running err and new max |
|
381 |
+ i_max = 0 |
|
382 |
+ i_min = 0 |
|
383 |
+ err = err_final |
|
384 |
+ igral = igral_final |
|
385 |
+ for i in range(len(ivals)): |
|
386 |
+ if ivals[i].err > ivals[i_max].err: |
|
387 |
+ i_max = i |
|
388 |
+ elif ivals[i].err < ivals[i_min].err: |
|
389 |
+ i_min = i |
|
390 |
+ err += ivals[i].err |
|
391 |
+ igral += ivals[i].igral |
|
392 |
+ |
|
393 |
+ # nuke smallest element if stack is larger than 200 |
|
394 |
+ if len(ivals) > 200: |
|
395 |
+ err_final += ivals[i_min].err |
|
396 |
+ igral_final += ivals[i_min].igral |
|
397 |
+ ivals[i_min] = ivals[-1] |
|
398 |
+ ivals.pop() |
|
399 |
+ if i_max == len(ivals): |
|
400 |
+ i_max = i_min |
|
401 |
+ |
|
402 |
+ # get up and leave? |
|
403 |
+ if (err == 0 |
|
404 |
+ or err < abs(igral) * tol |
|
405 |
+ or (err_final > abs(igral) * tol |
|
406 |
+ and err - err_final < abs(igral) * tol) |
|
407 |
+ or not ivals): |
|
408 |
+ break |
|
409 |
+ |
|
410 |
+ return igral, err, nr_points, ivals |
|
411 |
+ |
|
412 |
+ |
|
413 |
+################ Tests ################ |
|
414 |
+ |
|
415 |
+def f0(x): |
|
416 |
+ return x * np.sin(1/x) * np.sqrt(abs(1 - x)) |
|
417 |
+ |
|
418 |
+ |
|
419 |
+def f7(x): |
|
420 |
+ return x**-0.5 |
|
421 |
+ |
|
422 |
+ |
|
423 |
+def f24(x): |
|
424 |
+ return np.floor(np.exp(x)) |
|
425 |
+ |
|
426 |
+ |
|
427 |
+def f21(x): |
|
428 |
+ y = 0 |
|
429 |
+ for i in range(1, 4): |
|
430 |
+ y += 1 / np.cosh(20**i * (x - 2 * i / 10)) |
|
431 |
+ return y |
|
432 |
+ |
|
433 |
+ |
|
434 |
+def f63(x): |
|
435 |
+ return abs(x - 0.987654321)**-0.45 |
|
436 |
+ |
|
437 |
+ |
|
438 |
+def fdiv(x): |
|
439 |
+ return abs(x - 0.987654321)**-1.1 |
|
440 |
+ |
|
441 |
+ |
|
442 |
+def test_legendre(): |
|
443 |
+ legs = legendre(11) |
|
444 |
+ comparisons = [(legs[0], [1], 1), |
|
445 |
+ (legs[1], [0, 1], 1), |
|
446 |
+ (legs[10], [-63, 0, 3465, 0, -30030, 0, |
|
447 |
+ 90090, 0, -109395, 0, 46189], 256)] |
|
448 |
+ for a, b, div in comparisons: |
|
449 |
+ for c, d in zip(a, b): |
|
450 |
+ assert c * div == d |
|
451 |
+ |
|
452 |
+ |
|
453 |
+def test_scalar_product(n=33): |
|
454 |
+ legs = legendre(n) |
|
455 |
+ selection = [0, 5, 7, n-1] |
|
456 |
+ for i in selection: |
|
457 |
+ for j in selection: |
|
458 |
+ assert (scalar_product(legs[i], legs[j]) |
|
459 |
+ == ((i == j) and Frac(2, 2*i + 1))) |
|
460 |
+ |
|
461 |
+ |
|
462 |
+def simple_newton(n): |
|
463 |
+ """Slower than 'newton()' and prone to numerical error.""" |
|
464 |
+ from itertools import combinations |
|
465 |
+ |
|
466 |
+ nodes = -np.cos(np.arange(n) / (n-1) * np.pi) |
|
467 |
+ return [sum(np.prod(-np.asarray(sel)) |
|
468 |
+ for sel in combinations(nodes, n - d)) |
|
469 |
+ for d in range(n + 1)] |
|
470 |
+ |
|
471 |
+ |
|
472 |
+def test_newton(): |
|
473 |
+ assert_allclose(newton(9), simple_newton(9), atol=1e-15) |
|
474 |
+ |
|
475 |
+ |
|
476 |
+def test_b_def(depth=1): |
|
477 |
+ legs = [np.array(leg, float) for leg in legendre(n[depth] + 1)] |
|
478 |
+ result = np.zeros(len(legs[-1])) |
|
479 |
+ for factor, leg in zip(b_def[depth], legs): |
|
480 |
+ factor *= np.sqrt((2*len(leg) - 1) / 2) |
|
481 |
+ result[:len(leg)] += factor * leg |
|
482 |
+ assert_allclose(result, newton(n[depth]), rtol=1e-15) |
|
483 |
+ |
|
484 |
+ |
|
485 |
+def test_downdate(depth=3): |
|
486 |
+ fx = np.abs(xi[depth]) |
|
487 |
+ fx[1::2] = np.nan |
|
488 |
+ c_downdated = _calc_coeffs(fx, depth) |
|
489 |
+ |
|
490 |
+ depth -= 1 |
|
491 |
+ fx = np.abs(xi[depth]) |
|
492 |
+ c = _calc_coeffs(fx, depth) |
|
493 |
+ |
|
494 |
+ assert_allclose(c_downdated[:len(c)], c, rtol=0, atol=1e-9) |
|
495 |
+ |
|
496 |
+ |
|
497 |
+def test_integration(): |
|
498 |
+ old_settings = np.seterr(all='ignore') |
|
499 |
+ |
|
500 |
+ igral, err, nr_points = algorithm_4(f0, 0, 3, 1e-5) |
|
501 |
+ assert_allclose(igral, 1.98194117954329, 1e-15) |
|
502 |
+ assert_allclose(err, 1.9563545589988155e-05, 1e-10) |
|
503 |
+ assert nr_points == 1129 |
|
504 |
+ |
|
505 |
+ igral, err, nr_points = algorithm_4(f7, 0, 1, 1e-6) |
|
506 |
+ assert_allclose(igral, 1.9999998579359648, 1e-15) |
|
507 |
+ assert_allclose(err, 1.8561437334964041e-06, 1e-10) |
|
508 |
+ assert nr_points == 693 |
|
509 |
+ |
|
510 |
+ igral, err, nr_points = algorithm_4(f24, 0, 3, 1e-3) |
|
511 |
+ assert_allclose(igral, 17.664696186312934, 1e-15) |
|
512 |
+ assert_allclose(err, 0.017602618074957457, 1e-10) |
|
513 |
+ assert nr_points == 4519 |
|
514 |
+ |
|
515 |
+ igral, err, nr_points = algorithm_4(f21, 0, 1, 1e-3) |
|
516 |
+ assert_allclose(igral, 0.16310022131213361, 1e-15) |
|
517 |
+ assert_allclose(err, 0.00011848806384952786, 1e-10) |
|
518 |
+ assert nr_points == 191 |
|
519 |
+ |
|
520 |
+ igral, err, nr_points = algorithm_4(f63, 0, 1, 1e-10) |
|
521 |
+ assert_allclose(igral, 1.967971650560763, 1e-15) |
|
522 |
+ assert_allclose(err, 2.9049859499240667e-09, 1e-7) |
|
523 |
+ assert nr_points == 2715 |
|
524 |
+ |
|
525 |
+ try: |
|
526 |
+ igral, err, nr_points = algorithm_4(fdiv, 0, 1, 1e-6) |
|
527 |
+ except DivergentIntegralError as e: |
|
528 |
+ assert e.igral == np.inf |
|
529 |
+ assert_allclose(e.err, 284.56192231467958, 1e-10) |
|
530 |
+ assert e.nr_points == 431 |
|
531 |
+ |
|
532 |
+ np.seterr(**old_settings) |
|
533 |
+ |
|
534 |
+ |
|
535 |
+if __name__ == '__main__': |
|
536 |
+ test_legendre() |
|
537 |
+ test_scalar_product() |
|
538 |
+ test_newton() |
|
539 |
+ test_b_def() |
|
540 |
+ test_downdate() |
|
541 |
+ test_integration() |
... | ... |
@@ -175,11 +175,12 @@ |
175 | 175 |
"metadata": {}, |
176 | 176 |
"outputs": [], |
177 | 177 |
"source": [ |
178 |
- "def func(xy):\n", |
|
178 |
+ "def func(xy, wait=True):\n", |
|
179 | 179 |
" import numpy as np\n", |
180 | 180 |
" from time import sleep\n", |
181 | 181 |
" from random import random\n", |
182 |
- " sleep(random())\n", |
|
182 |
+ " if wait:\n", |
|
183 |
+ " sleep(random())\n", |
|
183 | 184 |
" x, y = xy\n", |
184 | 185 |
" a = 0.2\n", |
185 | 186 |
" return x + np.exp(-(x**2 + y**2 - 0.75**2)**2/a**4)\n", |
... | ... |
@@ -204,7 +205,7 @@ |
204 | 205 |
"source": [ |
205 | 206 |
"%%output size=100\n", |
206 | 207 |
"%%opts Contours (alpha=0.3)\n", |
207 |
- "from adaptive.learner import *\n", |
|
208 |
+ "import holoviews as hv\n", |
|
208 | 209 |
"\n", |
209 | 210 |
"def plot(learner):\n", |
210 | 211 |
" tri = learner.ip().tri\n", |
... | ... |
@@ -230,7 +231,7 @@ |
230 | 231 |
"learner2 = adaptive.learner.Learner2D(func, bounds=[(-1, 1), (-1, 1)])\n", |
231 | 232 |
"lin = np.linspace(-1, 1, len(learner.points)**0.5)\n", |
232 | 233 |
"xy = [(x, y) for x in lin for y in lin]\n", |
233 |
- "learner2.add_data(xy, map(func, xy))\n", |
|
234 |
+ "learner2.add_data(xy, map(partial(func, wait=False), xy))\n", |
|
234 | 235 |
"learner2.plot().relabel('Homogeneous grid') + learner.plot().relabel('With adaptive')" |
235 | 236 |
] |
236 | 237 |
}, |
... | ... |
@@ -275,11 +276,104 @@ |
275 | 276 |
"metadata": {}, |
276 | 277 |
"outputs": [], |
277 | 278 |
"source": [ |
278 |
- "learner = adaptive.AverageLearner(g, None, 0.01)\n", |
|
279 |
+ "learner = adaptive.learner.AverageLearner(g, None, 0.01)\n", |
|
279 | 280 |
"runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 1)\n", |
280 | 281 |
"adaptive.live_plot(runner)" |
281 | 282 |
] |
282 | 283 |
}, |
284 |
+ { |
|
285 |
+ "cell_type": "markdown", |
|
286 |
+ "metadata": {}, |
|
287 |
+ "source": [ |
|
288 |
+ "# 1D integration learner with `cquad`" |
|
289 |
+ ] |
|
290 |
+ }, |
|
291 |
+ { |
|
292 |
+ "cell_type": "markdown", |
|
293 |
+ "metadata": {}, |
|
294 |
+ "source": [ |
|
295 |
+ "This learner learns a 1D function and calculates the integral and error of the integral with it. It is based on Pedro Gonnet's [implementation](https://www.academia.edu/1976055/Adaptive_quadrature_re-revisited).\n", |
|
296 |
+ "\n", |
|
297 |
+ "Let's try the following function with cusps (that is difficult to integrate):" |
|
298 |
+ ] |
|
299 |
+ }, |
|
300 |
+ { |
|
301 |
+ "cell_type": "code", |
|
302 |
+ "execution_count": null, |
|
303 |
+ "metadata": {}, |
|
304 |
+ "outputs": [], |
|
305 |
+ "source": [ |
|
306 |
+ "import numpy as np\n", |
|
307 |
+ "import holoviews as hv\n", |
|
308 |
+ "\n", |
|
309 |
+ "def f24(x):\n", |
|
310 |
+ " return np.floor(np.exp(x))\n", |
|
311 |
+ "\n", |
|
312 |
+ "xs = np.linspace(0, 3, 200)\n", |
|
313 |
+ "hv.Scatter((xs, [f24(x) for x in xs]))" |
|
314 |
+ ] |
|
315 |
+ }, |
|
316 |
+ { |
|
317 |
+ "cell_type": "markdown", |
|
318 |
+ "metadata": {}, |
|
319 |
+ "source": [ |
|
320 |
+ "Just to prove that this really is a difficult to integrate function, let's try a familiar function integrator `scipy.integrate.quad`, which will give us warnings that it encounters difficulties." |
|
321 |
+ ] |
|
322 |
+ }, |
|
323 |
+ { |
|
324 |
+ "cell_type": "code", |
|
325 |
+ "execution_count": null, |
|
326 |
+ "metadata": {}, |
|
327 |
+ "outputs": [], |
|
328 |
+ "source": [ |
|
329 |
+ "import scipy.integrate\n", |
|
330 |
+ "scipy.integrate.quad(f24, 0, 3)" |
|
331 |
+ ] |
|
332 |
+ }, |
|
333 |
+ { |
|
334 |
+ "cell_type": "markdown", |
|
335 |
+ "metadata": {}, |
|
336 |
+ "source": [ |
|
337 |
+ "We initialize a learner again and pass the bounds and relative tolerance we want to reach. Then in the `Runner` we pass `goal=lambda l: l.done()` where `learner.done()` is `True` when the relative tolerance has been reached." |
|
338 |
+ ] |
|
339 |
+ }, |
|
340 |
+ { |
|
341 |
+ "cell_type": "code", |
|
342 |
+ "execution_count": null, |
|
343 |
+ "metadata": {}, |
|
344 |
+ "outputs": [], |
|
345 |
+ "source": [ |
|
346 |
+ "learner = adaptive.learner.IntegratorLearner(f24, bounds=(0, 3), tol=1e-10)\n", |
|
347 |
+ "runner = adaptive.Runner(learner, executor=adaptive.runner.SequentialExecutor(), goal=lambda l: l.done())" |
|
348 |
+ ] |
|
349 |
+ }, |
|
350 |
+ { |
|
351 |
+ "cell_type": "markdown", |
|
352 |
+ "metadata": {}, |
|
353 |
+ "source": [ |
|
354 |
+ "Now we could do the live plotting again, but lets just wait untill the runner is done." |
|
355 |
+ ] |
|
356 |
+ }, |
|
357 |
+ { |
|
358 |
+ "cell_type": "code", |
|
359 |
+ "execution_count": null, |
|
360 |
+ "metadata": {}, |
|
361 |
+ "outputs": [], |
|
362 |
+ "source": [ |
|
363 |
+ "if not runner.task.done():\n", |
|
364 |
+ " raise RuntimeError('Wait for the runner to finish before executing the cells below!')" |
|
365 |
+ ] |
|
366 |
+ }, |
|
367 |
+ { |
|
368 |
+ "cell_type": "code", |
|
369 |
+ "execution_count": null, |
|
370 |
+ "metadata": {}, |
|
371 |
+ "outputs": [], |
|
372 |
+ "source": [ |
|
373 |
+ "print('The integral value is {} with the corresponding error of {}'.format(learner.igral, learner.err))\n", |
|
374 |
+ "learner.plot()" |
|
375 |
+ ] |
|
376 |
+ }, |
|
283 | 377 |
{ |
284 | 378 |
"cell_type": "markdown", |
285 | 379 |
"metadata": {}, |
... | ... |
@@ -562,6 +656,61 @@ |
562 | 656 |
"learner.plot().opts(style=dict(size=6)) * reconstructed_learner.plot()" |
563 | 657 |
] |
564 | 658 |
}, |
659 |
+ { |
|
660 |
+ "cell_type": "markdown", |
|
661 |
+ "metadata": {}, |
|
662 |
+ "source": [ |
|
663 |
+ "### Timing functions" |
|
664 |
+ ] |
|
665 |
+ }, |
|
666 |
+ { |
|
667 |
+ "cell_type": "markdown", |
|
668 |
+ "metadata": {}, |
|
669 |
+ "source": [ |
|
670 |
+ "To time the runner you **cannot** simply use \n", |
|
671 |
+ "```python\n", |
|
672 |
+ "now = datetime.now()\n", |
|
673 |
+ "runner = adaptive.Runner(...)\n", |
|
674 |
+ "print(datetime.now() - now)\n", |
|
675 |
+ "```\n", |
|
676 |
+ "because this will be done immediately. Also blocking the kernel with `while not runner.task.done()` will not work because the runner will not do anything when the kernel is blocked.\n", |
|
677 |
+ "\n", |
|
678 |
+ "Therefore you need to create an `async` function and hook it into the `ioloop` like so:" |
|
679 |
+ ] |
|
680 |
+ }, |
|
681 |
+ { |
|
682 |
+ "cell_type": "code", |
|
683 |
+ "execution_count": null, |
|
684 |
+ "metadata": {}, |
|
685 |
+ "outputs": [], |
|
686 |
+ "source": [ |
|
687 |
+ "import asyncio\n", |
|
688 |
+ "\n", |
|
689 |
+ "async def time(runner):\n", |
|
690 |
+ " from datetime import datetime\n", |
|
691 |
+ " now = datetime.now()\n", |
|
692 |
+ " await runner.task\n", |
|
693 |
+ " return datetime.now() - now\n", |
|
694 |
+ "\n", |
|
695 |
+ "ioloop = asyncio.get_event_loop()\n", |
|
696 |
+ "\n", |
|
697 |
+ "learner = adaptive.learner.IntegratorLearner(f24, bounds=(0, 3), tol=1e-3)\n", |
|
698 |
+ "runner = adaptive.Runner(learner, executor=adaptive.runner.SequentialExecutor(),\n", |
|
699 |
+ " goal=lambda l: l.done())\n", |
|
700 |
+ "\n", |
|
701 |
+ "timer = ioloop.create_task(time(runner))" |
|
702 |
+ ] |
|
703 |
+ }, |
|
704 |
+ { |
|
705 |
+ "cell_type": "code", |
|
706 |
+ "execution_count": null, |
|
707 |
+ "metadata": {}, |
|
708 |
+ "outputs": [], |
|
709 |
+ "source": [ |
|
710 |
+ "# The result will only be set when the runner is done.\n", |
|
711 |
+ "timer.result()" |
|
712 |
+ ] |
|
713 |
+ }, |
|
565 | 714 |
{ |
566 | 715 |
"cell_type": "markdown", |
567 | 716 |
"metadata": {}, |
... | ... |
@@ -1,3 +1,4 @@ |
1 |
+#!/usr/bin/env python3 |
|
1 | 2 |
# -*- coding: utf-8 -*- |
2 | 3 |
|
3 | 4 |
from setuptools import setup |
... | ... |
@@ -21,6 +22,7 @@ setup( |
21 | 22 |
'Topic :: Software Development :: Build Tools', |
22 | 23 |
'Programming Language :: Python :: 3.6', |
23 | 24 |
], |
24 |
- packages=['adaptive'], |
|
25 |
+ packages=['adaptive', |
|
26 |
+ 'adaptive.learner'], |
|
25 | 27 |
install_requires=requirements, |
26 | 28 |
) |
27 | 29 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,66 @@ |
1 |
+import numpy as np |
|
2 |
+from adaptive.learner import IntegratorLearner |
|
3 |
+from algorithm_4 import algorithm_4 |
|
4 |
+ |
|
5 |
+def same_ivals(f, a, b, tol, verbose): |
|
6 |
+ igral, err, nr_points, ivals = algorithm_4(f, a, b, tol) |
|
7 |
+ |
|
8 |
+ learner = IntegratorLearner(f, bounds=(a, b), tol=tol) |
|
9 |
+ for i in range(nr_points): |
|
10 |
+ points, loss_improvement = learner.choose_points(1) |
|
11 |
+ learner.add_data(points, map(learner.function, points)) |
|
12 |
+ if verbose: |
|
13 |
+ print('igral diff, ', learner.igral-igral, 'err diff', learner.err - err) |
|
14 |
+ return learner.equal(ivals, verbose=verbose) |
|
15 |
+ |
|
16 |
+ |
|
17 |
+def same_ivals_up_to(f, a, b, tol): |
|
18 |
+ igral, err, nr_points, ivals = algorithm_4(f, a, b, tol) |
|
19 |
+ |
|
20 |
+ learner = IntegratorLearner(f, bounds=(a, b), tol=tol) |
|
21 |
+ j = 0 |
|
22 |
+ equal_till = 0 |
|
23 |
+ for i in range(nr_points): |
|
24 |
+ points, loss_improvement = learner.choose_points(1) |
|
25 |
+ learner.add_data(points, map(learner.function, points)) |
|
26 |
+ if not learner._stack: |
|
27 |
+ try: |
|
28 |
+ j += 1 |
|
29 |
+ if learner.equal(ivals): |
|
30 |
+ equal_till = i + 1 |
|
31 |
+ except: |
|
32 |
+ all_equal = False |
|
33 |
+ |
|
34 |
+ return 'equal_till nr_points={} of {}'.format(equal_till, nr_points) |
|
35 |
+ |
|
36 |
+if __name__ == '__main__': |
|
37 |
+ old_settings = np.seterr(all='ignore') |
|
38 |
+ from algorithm_4 import f0, f7, f24, f21, f63, fdiv |
|
39 |
+ for i, args in enumerate([[f0, 0, 3, 1e-5], |
|
40 |
+ [f7, 0, 1, 1e-6], |
|
41 |
+ [f21, 0, 1, 1e-3], |
|
42 |
+ [f24, 0, 3, 1e-3], |
|
43 |
+ [f63, 0, 1, 1e-10]]): |
|
44 |
+ print('\nFunction {}'.format(i)) |
|
45 |
+ if same_ivals(*args, verbose=True): |
|
46 |
+ print(True) |
|
47 |
+ else: |
|
48 |
+ print(same_ivals_up_to(*args)) |
|
49 |
+ |
|
50 |
+ # This function should raise a DivergentIntegralError. |
|
51 |
+ print('Function ', i+1) |
|
52 |
+ f, a, b, tol = [fdiv, 0, 1, 1e-6] |
|
53 |
+ try: |
|
54 |
+ igral, err, nr_points, ivals = algorithm_4(f, a, b, tol) |
|
55 |
+ except Exception: |
|
56 |
+ print('The integral is diverging.') |
|
57 |
+ |
|
58 |
+ try: |
|
59 |
+ learner = IntegratorLearner(f, bounds=(a, b), tol=tol) |
|
60 |
+ for i in range(nr_points): |
|
61 |
+ points, loss_improvement = learner.choose_points(1) |
|
62 |
+ learner.add_data(points, map(learner.function, points)) |
|
63 |
+ except Exception: |
|
64 |
+ print('The integral is diverging.') |
|
65 |
+ |
|
66 |
+ np.seterr(**old_settings) |