... | ... |
@@ -30,7 +30,7 @@ def test_avg_std_and_npoints(): |
30 | 30 |
# This will add 5000 points at random values of n. |
31 | 31 |
# It could try to readd already evaluated points. |
32 | 32 |
|
33 |
- n = random.randint(0, 2*300) |
|
33 |
+ n = random.randint(0, 2 * 300) |
|
34 | 34 |
value = random.random() |
35 | 35 |
|
36 | 36 |
# With 10% chance None is added to simulate asking that point. |
... | ... |
@@ -13,14 +13,6 @@ from .algorithm_4 import DivergentIntegralError as A4DivergentIntegralError |
13 | 13 |
eps = np.spacing(1) |
14 | 14 |
|
15 | 15 |
|
16 |
-def rolling_shuffle(nums, size): |
|
17 |
- for i in range(len(nums) - size): |
|
18 |
- x = nums[i:i+size+1] |
|
19 |
- random.shuffle(x) |
|
20 |
- nums[i:i+size+1] = x |
|
21 |
- return nums |
|
22 |
- |
|
23 |
- |
|
24 | 16 |
def run_integrator_learner(f, a, b, tol, n): |
25 | 17 |
learner = IntegratorLearner(f, bounds=(a, b), tol=tol) |
26 | 18 |
for _ in range(n): |
... | ... |
@@ -73,6 +65,7 @@ def same_ivals(f, a, b, tol): |
73 | 65 |
|
74 | 66 |
return equal_ivals(learner.ivals, ivals, verbose=True) |
75 | 67 |
|
68 |
+ |
|
76 | 69 |
# XXX: This *should* pass (https://gitlab.kwant-project.org/qt/adaptive/issues/84) |
77 | 70 |
@pytest.mark.xfail |
78 | 71 |
def test_that_gives_same_intervals_as_reference_implementation(): |
... | ... |
@@ -162,7 +155,6 @@ def test_adding_points_and_skip_one_point(): |
162 | 155 |
np.testing.assert_almost_equal(learner.igral, learner2.igral) |
163 | 156 |
|
164 | 157 |
|
165 |
- |
|
166 | 158 |
# XXX: This *should* pass (https://gitlab.kwant-project.org/qt/adaptive/issues/84) |
167 | 159 |
@pytest.mark.xfail |
168 | 160 |
def test_tell_in_random_order(first_add_33=False): |
... | ... |
@@ -224,7 +216,6 @@ def test_tell_in_random_order(first_add_33=False): |
224 | 216 |
assert np.isfinite(l.err) |
225 | 217 |
|
226 | 218 |
|
227 |
- |
|
228 | 219 |
# XXX: This *should* pass (https://gitlab.kwant-project.org/qt/adaptive/issues/84) |
229 | 220 |
@pytest.mark.xfail |
230 | 221 |
def test_tell_in_random_order_first_add_33(): |
... | ... |
@@ -4,7 +4,7 @@ import random |
4 | 4 |
import numpy as np |
5 | 5 |
|
6 | 6 |
from ..learner import Learner1D |
7 |
-from ..runner import simple, replay_log |
|
7 |
+from ..runner import simple |
|
8 | 8 |
|
9 | 9 |
|
10 | 10 |
def test_pending_loss_intervals(): |
... | ... |
@@ -200,7 +200,8 @@ def test_small_deviations(): |
200 | 200 |
|
201 | 201 |
def test_uniform_sampling1D_v2(): |
202 | 202 |
def check(known, expect): |
203 |
- def f(x): return x |
|
203 |
+ def f(x): |
|
204 |
+ return x |
|
204 | 205 |
learner = Learner1D(f, bounds=(-1, 1)) |
205 | 206 |
for x in known: |
206 | 207 |
learner.tell(x, f(x)) |
... | ... |
@@ -241,8 +242,8 @@ def test_tell_many(): |
241 | 242 |
def f(x, offset=0.123214): |
242 | 243 |
a = 0.01 |
243 | 244 |
return (np.sin(x**2) + np.sin(x**5) |
244 |
- + a**2 / (a**2 + (x - offset)**2) |
|
245 |
- + x**2 + 1e-5 * x**3) |
|
245 |
+ + a**2 / (a**2 + (x - offset)**2) |
|
246 |
+ + x**2 + 1e-5 * x**3) |
|
246 | 247 |
|
247 | 248 |
def f_vec(x, offset=0.123214): |
248 | 249 |
a = 0.01 |
... | ... |
@@ -11,8 +11,8 @@ import scipy.spatial |
11 | 11 |
|
12 | 12 |
import pytest |
13 | 13 |
|
14 |
-from ..learner import * |
|
15 |
-from ..runner import simple, replay_log |
|
14 |
+from ..learner import AverageLearner, BalancingLearner, Learner1D, Learner2D, LearnerND |
|
15 |
+from ..runner import simple |
|
16 | 16 |
|
17 | 17 |
|
18 | 18 |
def generate_random_parametrization(f): |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-from collections import defaultdict, Counter |
|
1 |
+from collections import Counter |
|
2 | 2 |
from math import factorial |
3 | 3 |
import itertools |
4 | 4 |
import pytest |
... | ... |
@@ -297,7 +297,7 @@ def test_triangulation_is_deterministic(dim): |
297 | 297 |
@with_dimension |
298 | 298 |
def test_initialisation_raises_when_not_enough_points(dim): |
299 | 299 |
deficient_simplex = _make_standard_simplex(dim)[:-1] |
300 |
- |
|
300 |
+ |
|
301 | 301 |
with pytest.raises(ValueError): |
302 | 302 |
Triangulation(deficient_simplex) |
303 | 303 |
|
... | ... |
@@ -305,12 +305,12 @@ def test_initialisation_raises_when_not_enough_points(dim): |
305 | 305 |
@with_dimension |
306 | 306 |
def test_initialisation_raises_when_points_coplanar(dim): |
307 | 307 |
zero_volume_simplex = _make_standard_simplex(dim)[:-1] |
308 |
- |
|
308 |
+ |
|
309 | 309 |
new_point1 = np.average(zero_volume_simplex, axis=0) |
310 | 310 |
new_point2 = np.sum(zero_volume_simplex, axis=0) |
311 |
- zero_volume_simplex = np.vstack((zero_volume_simplex, |
|
311 |
+ zero_volume_simplex = np.vstack((zero_volume_simplex, |
|
312 | 312 |
new_point1, new_point2)) |
313 |
- |
|
313 |
+ |
|
314 | 314 |
with pytest.raises(ValueError): |
315 | 315 |
Triangulation(zero_volume_simplex) |
316 | 316 |
|
... | ... |
@@ -326,6 +326,6 @@ def test_initialisation_accepts_more_than_one_simplex(dim): |
326 | 326 |
simplex1 = tuple(range(dim+1)) |
327 | 327 |
simplex2 = tuple(range(1, dim+2)) |
328 | 328 |
|
329 |
- _check_triangulation_is_valid(tri) |
|
330 |
- |
|
329 |
+ _check_triangulation_is_valid(tri) |
|
330 |
+ |
|
331 | 331 |
assert tri.simplices == {simplex1, simplex2} |