...
|
...
|
@@ -127,7 +127,7 @@ class AverageLearner(BaseLearner):
|
127
|
127
|
self.sum_f = 0
|
128
|
128
|
self.sum_f_sq = 0
|
129
|
129
|
|
130
|
|
- def choose_points(self, n=10, add_data=True):
|
|
130
|
+ def choose_points(self, n, add_data=True):
|
131
|
131
|
points = list(range(self.n_requested, self.n_requested + n))
|
132
|
132
|
loss_improvements = [None] * n
|
133
|
133
|
if add_data:
|
...
|
...
|
@@ -313,7 +313,7 @@ class Learner1D(BaseLearner):
|
313
|
313
|
for x in self.losses_combined}
|
314
|
314
|
self._oldscale = self._scale
|
315
|
315
|
|
316
|
|
- def choose_points(self, n=10, add_data=True):
|
|
316
|
+ def choose_points(self, n, add_data=True):
|
317
|
317
|
"""Return n points that are expected to maximally reduce the loss."""
|
318
|
318
|
# Find out how to divide the n points over the intervals
|
319
|
319
|
# by finding positive integer n_i that minimize max(L_i / n_i) subject
|