Browse code

2D: improve docs

Bas Nijholt authored on 08/10/2019 15:55:44
Showing 1 changed files
... ...
@@ -27,7 +27,7 @@ def deviations(ip):
27 27
 
28 28
     Returns
29 29
     -------
30
-    numpy array
30
+    deviations : numpy.ndarray
31 31
         The deviation per triangle.
32 32
     """
33 33
     values = ip.values / (ip.values.ptp(axis=0).max() or 1)
... ...
@@ -65,7 +65,7 @@ def areas(ip):
65 65
 
66 66
     Returns
67 67
     -------
68
-    numpy array
68
+    areas : numpy.ndarray
69 69
         The area per triangle in ``ip.tri``.
70 70
     """
71 71
     p = ip.tri.points[ip.tri.vertices]
... ...
@@ -79,6 +79,15 @@ def uniform_loss(ip):
79 79
 
80 80
     Works with `~adaptive.Learner2D` only.
81 81
 
82
+    Parameters
83
+    ----------
84
+    ip : `scipy.interpolate.LinearNDInterpolator` instance
85
+
86
+    Returns
87
+    -------
88
+    losses : numpy.ndarray
89
+        Loss per triangle in ``ip.tri``.
90
+
82 91
     Examples
83 92
     --------
84 93
     >>> from adaptive.learner.learner2D import uniform_loss
... ...
@@ -103,6 +112,10 @@ def resolution_loss_function(min_distance=0, max_distance=1):
103 112
     The arguments `min_distance` and `max_distance` should be in between 0 and 1
104 113
     because the total area is normalized to 1.
105 114
 
115
+    Returns
116
+    -------
117
+    loss_function : callable
118
+
106 119
     Examples
107 120
     --------
108 121
     >>> def f(xy):
... ...
@@ -133,12 +146,21 @@ def resolution_loss_function(min_distance=0, max_distance=1):
133 146
 
134 147
 
135 148
 def minimize_triangle_surface_loss(ip):
136
-    """Loss function that is similar to the default loss function in the
149
+    """Loss function that is similar to the distance loss function in the
137 150
     `~adaptive.Learner1D`. The loss is the area spanned by the 3D
138 151
     vectors of the vertices.
139 152
 
140 153
     Works with `~adaptive.Learner2D` only.
141 154
 
155
+    Parameters
156
+    ----------
157
+    ip : `scipy.interpolate.LinearNDInterpolator` instance
158
+
159
+    Returns
160
+    -------
161
+    losses : numpy.ndarray
162
+        Loss per triangle in ``ip.tri``.
163
+
142 164
     Examples
143 165
     --------
144 166
     >>> from adaptive.learner.learner2D import minimize_triangle_surface_loss
... ...
@@ -170,6 +192,19 @@ def minimize_triangle_surface_loss(ip):
170 192
 
171 193
 
172 194
 def default_loss(ip):
195
+    """Loss function that combines
196
+
197
+    Works with `~adaptive.Learner2D` only.
198
+
199
+    Parameters
200
+    ----------
201
+    ip : `scipy.interpolate.LinearNDInterpolator` instance
202
+
203
+    Returns
204
+    -------
205
+    losses : numpy.ndarray
206
+        Loss per triangle in ``ip.tri``.
207
+    """
173 208
     dev = np.sum(deviations(ip), axis=0)
174 209
     A = areas(ip)
175 210
     losses = dev * np.sqrt(A) + 0.3 * A
... ...
@@ -425,6 +460,12 @@ class Learner2D(BaseLearner):
425 460
         Returns
426 461
         -------
427 462
         interpolate : `scipy.interpolate.LinearNDInterpolator`
463
+
464
+        Examples
465
+        --------
466
+        >>> xs, ys = [np.linspace(*b, n=100) for b in learner.bounds]
467
+        >>> ip = learner.interpolator()
468
+        >>> zs = ip(xs[:, None], ys[None, :])
428 469
         """
429 470
         if scaled:
430 471
             if self._ip is None: