... | ... |
@@ -675,7 +675,7 @@ class Learner2D(BaseLearner): |
675 | 675 |
|
676 | 676 |
self.x_scale = self.bounds[0][1] - self.bounds[0][0] |
677 | 677 |
self.y_scale = self.bounds[1][1] - self.bounds[1][0] |
678 |
- self.xy_scale = hypot(self.x_scale, self.y_scale) |
|
678 |
+ self.xy_scale = np.array([self.x_scale, self.y_scale]) |
|
679 | 679 |
|
680 | 680 |
# Keeps track till which index _points and _values are filled |
681 | 681 |
self.n = 0 |
... | ... |
@@ -683,19 +683,9 @@ class Learner2D(BaseLearner): |
683 | 683 |
self._bounds_points = list(itertools.product(*bounds)) |
684 | 684 |
|
685 | 685 |
# Add the loss improvement to the bounds in the stack |
686 |
- self._bounds_points = [(x / self.x_scale, y / self.y_scale) |
|
687 |
- for x, y in self._bounds_points] |
|
688 | 686 |
self._stack = [(*p, np.inf) for p in self._bounds_points] |
689 | 687 |
|
690 |
- self.original_function = function |
|
691 |
- |
|
692 |
- def scaled_function(xy): |
|
693 |
- x, y = xy |
|
694 |
- x *= self.x_scale |
|
695 |
- y *= self.y_scale |
|
696 |
- return self.original_function((x, y)) |
|
697 |
- |
|
698 |
- self.function = scaled_function |
|
688 |
+ self.function = function |
|
699 | 689 |
|
700 | 690 |
@property |
701 | 691 |
def points_combined(self): |