...
|
...
|
@@ -476,7 +476,7 @@ class Learner2D(BaseLearner):
|
476
|
476
|
points, values = self._data_in_bounds()
|
477
|
477
|
return interpolate.LinearNDInterpolator(points, values)
|
478
|
478
|
|
479
|
|
- def _interpolate_combined(self):
|
|
479
|
+ def _interpolator_combined(self):
|
480
|
480
|
"""A `scipy.interpolate.LinearNDInterpolator` instance
|
481
|
481
|
containing the learner's data *and* interpolated data of
|
482
|
482
|
the `pending_points`."""
|
...
|
...
|
@@ -513,7 +513,7 @@ class Learner2D(BaseLearner):
|
513
|
513
|
raise ValueError("too few points...")
|
514
|
514
|
|
515
|
515
|
# Interpolate
|
516
|
|
- ip = self._interpolate_combined()
|
|
516
|
+ ip = self._interpolator_combined()
|
517
|
517
|
|
518
|
518
|
losses = self.loss_per_triangle(ip)
|
519
|
519
|
|
...
|
...
|
@@ -581,7 +581,7 @@ class Learner2D(BaseLearner):
|
581
|
581
|
def loss(self, real=True):
|
582
|
582
|
if not self.bounds_are_done:
|
583
|
583
|
return np.inf
|
584
|
|
- ip = self.interpolator(scaled=True) if real else self._interpolate_combined()
|
|
584
|
+ ip = self.interpolator(scaled=True) if real else self._interpolator_combined()
|
585
|
585
|
losses = self.loss_per_triangle(ip)
|
586
|
586
|
return losses.max()
|
587
|
587
|
|