...
|
...
|
@@ -251,7 +251,6 @@ class Learner1D(BaseLearner):
|
251
|
251
|
|
252
|
252
|
self._oldscale = deepcopy(self._scale)
|
253
|
253
|
|
254
|
|
-
|
255
|
254
|
def ask(self, n, add_data=True):
|
256
|
255
|
"""Return n points that are expected to maximally reduce the loss."""
|
257
|
256
|
# Find out how to divide the n points over the intervals
|
...
|
...
|
@@ -273,11 +272,11 @@ class Learner1D(BaseLearner):
|
273
|
272
|
if len(points) == 2:
|
274
|
273
|
# First time
|
275
|
274
|
loss_improvements = [np.inf] * n
|
276
|
|
- points = np.linspace(*self.bounds, n)
|
|
275
|
+ points = np.linspace(*self.bounds, n).tolist()
|
277
|
276
|
elif len(points) == 1:
|
278
|
277
|
# Second time, if we previously returned just self.bounds[0]
|
279
|
278
|
loss_improvements = [np.inf] * n
|
280
|
|
- points = np.linspace(*self.bounds, n + 1)[1:]
|
|
279
|
+ points = np.linspace(*self.bounds, n + 1)[1:].tolist()
|
281
|
280
|
else:
|
282
|
281
|
def xs(x, n):
|
283
|
282
|
if n == 1:
|
...
|
...
|
@@ -336,7 +335,6 @@ class Learner1D(BaseLearner):
|
336
|
335
|
|
337
|
336
|
return p.redim(x=dict(range=plot_bounds))
|
338
|
337
|
|
339
|
|
-
|
340
|
338
|
def remove_unfinished(self):
|
341
|
339
|
self.pending_points = set()
|
342
|
340
|
self.losses_combined = deepcopy(self.losses)
|