... | ... |
@@ -25,12 +25,43 @@ |
25 | 25 |
"outputs": [], |
26 | 26 |
"source": [ |
27 | 27 |
"import numpy as np\n", |
28 |
- "import learner\n", |
|
28 |
+ "import adalearner\n", |
|
29 | 29 |
"from time import sleep\n", |
30 | 30 |
"from random import randint\n", |
31 | 31 |
"from functools import partial\n", |
32 |
+ "import ipyparallel\n", |
|
33 |
+ "import concurrent.futures\n", |
|
32 | 34 |
"import importlib\n", |
33 |
- "importlib.reload(learner)" |
|
35 |
+ "importlib.reload(adalearner)" |
|
36 |
+ ] |
|
37 |
+ }, |
|
38 |
+ { |
|
39 |
+ "cell_type": "code", |
|
40 |
+ "execution_count": null, |
|
41 |
+ "metadata": { |
|
42 |
+ "collapsed": true |
|
43 |
+ }, |
|
44 |
+ "outputs": [], |
|
45 |
+ "source": [ |
|
46 |
+ "import asyncio\n", |
|
47 |
+ "from ipykernel.eventloops import register_integration\n", |
|
48 |
+ "\n", |
|
49 |
+ "@register_integration('asyncio')\n", |
|
50 |
+ "def loop_asyncio(kernel):\n", |
|
51 |
+ " '''Start a kernel with asyncio event loop support.'''\n", |
|
52 |
+ " loop = asyncio.get_event_loop()\n", |
|
53 |
+ "\n", |
|
54 |
+ " def kernel_handler():\n", |
|
55 |
+ " loop.call_soon(kernel.do_one_iteration)\n", |
|
56 |
+ " loop.call_later(kernel._poll_interval, kernel_handler)\n", |
|
57 |
+ "\n", |
|
58 |
+ " loop.call_soon(kernel_handler)\n", |
|
59 |
+ " try:\n", |
|
60 |
+ " if not loop.is_running():\n", |
|
61 |
+ " loop.run_forever()\n", |
|
62 |
+ " finally:\n", |
|
63 |
+ " loop.run_until_complete(loop.shutdown_asyncgens())\n", |
|
64 |
+ " loop.close()" |
|
34 | 65 |
] |
35 | 66 |
}, |
36 | 67 |
{ |
... | ... |
@@ -38,13 +69,27 @@ |
38 | 69 |
"execution_count": null, |
39 | 70 |
"metadata": {}, |
40 | 71 |
"outputs": [], |
72 |
+ "source": [ |
|
73 |
+ "%gui asyncio" |
|
74 |
+ ] |
|
75 |
+ }, |
|
76 |
+ { |
|
77 |
+ "cell_type": "code", |
|
78 |
+ "execution_count": null, |
|
79 |
+ "metadata": { |
|
80 |
+ "collapsed": true |
|
81 |
+ }, |
|
82 |
+ "outputs": [], |
|
41 | 83 |
"source": [ |
42 | 84 |
"def func(x, wait=True):\n", |
85 |
+ " \"\"\"Function with a sharp peak on a smooth background\"\"\"\n", |
|
86 |
+ " import numpy as np\n", |
|
87 |
+ " from time import sleep\n", |
|
43 | 88 |
" x = np.asarray(x)\n", |
44 |
- " a = 10\n", |
|
89 |
+ " a = 0.001\n", |
|
45 | 90 |
" if wait:\n", |
46 |
- " sleep(randint(1, 3))\n", |
|
47 |
- " return np.sin(x) + 0.0001/(0.0001 + x**2)" |
|
91 |
+ " sleep(np.random.randint(1, 3))\n", |
|
92 |
+ " return x + a**2/(a**2 + (x)**2)" |
|
48 | 93 |
] |
49 | 94 |
}, |
50 | 95 |
{ |
... | ... |
@@ -60,33 +105,21 @@ |
60 | 105 |
"metadata": {}, |
61 | 106 |
"outputs": [], |
62 | 107 |
"source": [ |
63 |
- "import tornado\n", |
|
64 |
- "from distributed import Client\n", |
|
108 |
+ "learner = adalearner.Learner1D(func, client=ipyparallel.Client())\n", |
|
65 | 109 |
"\n", |
66 |
- "io = tornado.ioloop.IOLoop.current()\n", |
|
67 |
- "\n", |
|
68 |
- "# Initialize the learner\n", |
|
69 |
- "learner1d = learner.Learner1D()\n", |
|
70 |
- "learner1d.add_point(-1, func(-1))\n", |
|
71 |
- "learner1d.add_point(1, func(1))" |
|
110 |
+ "learner.add_point(-1, func(-1))\n", |
|
111 |
+ "learner.add_point(1, func(1))" |
|
72 | 112 |
] |
73 | 113 |
}, |
74 | 114 |
{ |
75 | 115 |
"cell_type": "code", |
76 | 116 |
"execution_count": null, |
77 |
- "metadata": {}, |
|
117 |
+ "metadata": { |
|
118 |
+ "collapsed": true |
|
119 |
+ }, |
|
78 | 120 |
"outputs": [], |
79 | 121 |
"source": [ |
80 |
- "async def dask_run(learner):\n", |
|
81 |
- " async with Client(asynchronous=True) as client:\n", |
|
82 |
- " await learner.run(func, client, learner1d ,goal=lambda learner1d: learner1d.loss() < 0.000001)\n", |
|
83 |
- "\n", |
|
84 |
- "def plot(data):\n", |
|
85 |
- " xy = [(k, v) for k, v in sorted(data.items()) if v is not None]\n", |
|
86 |
- " if not xy:\n", |
|
87 |
- " return hv.Scatter([])\n", |
|
88 |
- " x, y = np.array(xy, dtype=float).T\n", |
|
89 |
- " return hv.Scatter((x, y))" |
|
122 |
+ "learner.start()" |
|
90 | 123 |
] |
91 | 124 |
}, |
92 | 125 |
{ |
... | ... |
@@ -96,7 +129,7 @@ |
96 | 129 |
"outputs": [], |
97 | 130 |
"source": [ |
98 | 131 |
"data_stream = Stream.define('data', data=param.ObjectSelector(default=dict()))\n", |
99 |
- "dm = hv.DynamicMap(plot, streams=[data_stream()])\n", |
|
132 |
+ "dm = hv.DynamicMap(learner.plot, streams=[data_stream()])\n", |
|
100 | 133 |
"dm" |
101 | 134 |
] |
102 | 135 |
}, |
... | ... |
@@ -106,9 +139,12 @@ |
106 | 139 |
"metadata": {}, |
107 | 140 |
"outputs": [], |
108 | 141 |
"source": [ |
109 |
- "pc = tornado.ioloop.PeriodicCallback(lambda: dm.event(data=learner1d.data), 100)\n", |
|
110 |
- "pc.start()\n", |
|
111 |
- "io.add_callback(dask_run, learner)" |
|
142 |
+ "async def monitor(delay=1):\n", |
|
143 |
+ " while True:\n", |
|
144 |
+ " dm.event(data=learner.data)\n", |
|
145 |
+ " await asyncio.sleep(delay)\n", |
|
146 |
+ " \n", |
|
147 |
+ "monitor_task = learner.ioloop.create_task(monitor())" |
|
112 | 148 |
] |
113 | 149 |
}, |
114 | 150 |
{ |
... | ... |
@@ -116,7 +152,9 @@ |
116 | 152 |
"execution_count": null, |
117 | 153 |
"metadata": {}, |
118 | 154 |
"outputs": [], |
119 |
- "source": [] |
|
155 |
+ "source": [ |
|
156 |
+ "learner.task.print_stack()" |
|
157 |
+ ] |
|
120 | 158 |
} |
121 | 159 |
], |
122 | 160 |
"metadata": { |
123 | 161 |
similarity index 67% |
124 | 162 |
rename from learner.py |
125 | 163 |
rename to adalearner.py |
... | ... |
@@ -1,20 +1,74 @@ |
1 |
+ |
|
2 |
+import abc |
|
3 |
+import asyncio |
|
1 | 4 |
import heapq |
2 |
-from math import sqrt |
|
3 | 5 |
import itertools |
4 |
-import multiprocessing |
|
6 |
+import os |
|
7 |
+from math import sqrt |
|
5 | 8 |
|
9 |
+import concurrent |
|
10 |
+import distributed |
|
11 |
+import holoviews as hv |
|
12 |
+import ipyparallel |
|
6 | 13 |
import numpy as np |
7 |
-import tornado |
|
8 | 14 |
|
9 | 15 |
|
10 |
-def add_arg(func): |
|
11 |
- """Make func return (arg, func(arg)).""" |
|
12 |
- def wrapper(*args): |
|
13 |
- return (args[0], func(*args)) |
|
14 |
- return wrapper |
|
16 |
+class BaseLearner(metaclass=abc.ABCMeta): |
|
17 |
+ def __init__(self, xdata=None, ydata=None): |
|
18 |
+ """Initialize the learner. |
|
19 |
+ |
|
20 |
+ Parameters |
|
21 |
+ ---------- |
|
22 |
+ data : |
|
23 |
+ Possibly empty list of float-like tuples, describing the initial |
|
24 |
+ data. |
|
25 |
+ """ |
|
26 |
+ # A dict {x_n: y_n} for quick checking of local |
|
27 |
+ # properties. |
|
28 |
+ self.data = {} |
|
29 |
+ |
|
30 |
+ # Add initial data if provided |
|
31 |
+ if xdata is not None: |
|
32 |
+ self.add_data(xdata, ydata) |
|
33 |
+ |
|
34 |
+ def add_data(self, xvalues, yvalues): |
|
35 |
+ """Add data to the intervals. |
|
36 |
+ |
|
37 |
+ Parameters |
|
38 |
+ ---------- |
|
39 |
+ xvalues : iterable of numbers |
|
40 |
+ Values of the x coordinate. |
|
41 |
+ yvalues : iterable of numbers and None |
|
42 |
+ Values of the y coordinate. `None` means that the value will be |
|
43 |
+ provided later. |
|
44 |
+ """ |
|
45 |
+ try: |
|
46 |
+ for x, y in zip(xvalues, yvalues): |
|
47 |
+ self.add_point(x, y) |
|
48 |
+ except TypeError: |
|
49 |
+ self.add_point(xvalues, yvalues) |
|
50 |
+ |
|
51 |
+ def add_point(self, x, y): |
|
52 |
+ """Update the data.""" |
|
53 |
+ self.data[x] = y |
|
54 |
+ |
|
55 |
+ def remove_unfinished(self): |
|
56 |
+ self.data = {k: v for k, v in self.data.items() if v is not None} |
|
57 |
+ |
|
58 |
+ @abc.abstractmethod |
|
59 |
+ def loss(self): |
|
60 |
+ pass |
|
61 |
+ |
|
62 |
+ @abc.abstractmethod |
|
63 |
+ def choose_points(self, n=10): |
|
64 |
+ pass |
|
65 |
+ |
|
66 |
+ @abc.abstractmethod |
|
67 |
+ def interpolate(self): |
|
68 |
+ pass |
|
15 | 69 |
|
16 | 70 |
|
17 |
-class Learner1D(object): |
|
71 |
+class _Learner1D(BaseLearner): |
|
18 | 72 |
""" Learns and predicts a 1D function. |
19 | 73 |
|
20 | 74 |
Description |
... | ... |
@@ -38,6 +92,7 @@ class Learner1D(object): |
38 | 92 |
""" |
39 | 93 |
|
40 | 94 |
# Set internal variables |
95 |
+ super().__init__(xdata, ydata) |
|
41 | 96 |
|
42 | 97 |
# A dict storing the loss function for each interval x_n. |
43 | 98 |
self.losses = {} |
... | ... |
@@ -45,9 +100,6 @@ class Learner1D(object): |
45 | 100 |
# A dict {x_n: [x_{n-1}, x_{n+1}]} for quick checking of local |
46 | 101 |
# properties. |
47 | 102 |
self.neighbors = {} |
48 |
- # A dict {x_n: y_n} for quick checking of local |
|
49 |
- # properties. |
|
50 |
- self.data = {} |
|
51 | 103 |
|
52 | 104 |
# Bounding box [[minx, maxx], [miny, maxy]]. |
53 | 105 |
self._bbox = [[np.inf, -np.inf], [np.inf, -np.inf]] |
... | ... |
@@ -55,10 +107,6 @@ class Learner1D(object): |
55 | 107 |
self._scale = [0, 0] |
56 | 108 |
self._oldscale = [0, 0] |
57 | 109 |
|
58 |
- # Add initial data if provided |
|
59 |
- if xdata is not None: |
|
60 |
- self.add_data(xdata, ydata) |
|
61 |
- |
|
62 | 110 |
def interval_loss(self, x_left, x_right): |
63 | 111 |
"""Calculate loss in the interval x_left, x_right. |
64 | 112 |
|
... | ... |
@@ -76,26 +124,10 @@ class Learner1D(object): |
76 | 124 |
else: |
77 | 125 |
return max(self.losses.values()) |
78 | 126 |
|
79 |
- def add_data(self, xvalues, yvalues): |
|
80 |
- """Add data to the intervals. |
|
81 |
- |
|
82 |
- Parameters |
|
83 |
- ---------- |
|
84 |
- xvalues : iterable of numbers |
|
85 |
- Values of the x coordinate. |
|
86 |
- yvalues : iterable of numbers and None |
|
87 |
- Values of the y coordinate. `None` means that the value will be |
|
88 |
- provided later. |
|
89 |
- """ |
|
90 |
- try: |
|
91 |
- for x, y in zip(xvalues, yvalues): |
|
92 |
- self.add_point(x, y) |
|
93 |
- except TypeError: |
|
94 |
- self.add_point(xvalues, yvalues) |
|
95 | 127 |
|
96 | 128 |
def add_point(self, x, y): |
97 | 129 |
"""Update the data.""" |
98 |
- self.data[x] = y |
|
130 |
+ super().add_point(x, y) |
|
99 | 131 |
|
100 | 132 |
# Update the scale. |
101 | 133 |
self._bbox[0][0] = min(self._bbox[0][0], x) |
... | ... |
@@ -138,7 +170,7 @@ class Learner1D(object): |
138 | 170 |
return xs |
139 | 171 |
|
140 | 172 |
def remove_unfinished(self): |
141 |
- self.data = {k: v for k, v in self.data.items() if v is not None} |
|
173 |
+ super().remove_unfinished() |
|
142 | 174 |
# Update the scale. |
143 | 175 |
self._bbox[0][0] = min(self.data.keys()) |
144 | 176 |
self._bbox[0][1] = max(self.data.keys()) |
... | ... |
@@ -149,13 +181,6 @@ class Learner1D(object): |
149 | 181 |
|
150 | 182 |
self.interpolate() |
151 | 183 |
|
152 |
- def get_largest_interval(self): |
|
153 |
- xs = sorted(x for x, y in self.data.items() if y is not None) |
|
154 |
- if len(xs) < 2: |
|
155 |
- return np.inf |
|
156 |
- else: |
|
157 |
- return np.diff(xs).max() |
|
158 |
- |
|
159 | 184 |
def interpolate(self): |
160 | 185 |
xdata = [] |
161 | 186 |
ydata = [] |
... | ... |
@@ -200,19 +225,79 @@ class Learner1D(object): |
200 | 225 |
pass |
201 | 226 |
|
202 | 227 |
|
203 |
-# We can't use API that is specific to any particular asynchronous |
|
204 |
-# framework, so we have to roll our own utility functions. |
|
228 |
+class AsyncExecutor: |
|
229 |
+ |
|
230 |
+ def __init__(self, executor, ioloop): |
|
231 |
+ self.executor = executor |
|
232 |
+ self.ioloop = ioloop |
|
233 |
+ |
|
234 |
+ def submit(self, f, *args, **kwargs): |
|
235 |
+ return self.ioloop.run_in_executor(self.executor, f, *args, **kwargs) |
|
236 |
+ |
|
237 |
+ |
|
238 |
+def ensure_async_executor(client, ioloop): |
|
239 |
+ if isinstance(client, ipyparallel.Client): |
|
240 |
+ async_executor = AsyncExecutor(client.executor(), ioloop) |
|
241 |
+ elif isinstance(client, distributed.Client): |
|
242 |
+ async_executor = async_executor |
|
243 |
+ elif client is None: |
|
244 |
+ client = concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) |
|
245 |
+ async_executor = AsyncExecutor(client, ioloop) |
|
246 |
+ else: |
|
247 |
+ raise NotImplementedError('Blabla') |
|
248 |
+ |
|
249 |
+ return async_executor |
|
250 |
+ |
|
251 |
+ |
|
252 |
+def runner(learner): |
|
253 |
+ if isinstance(learner.client, ipyparallel.Client): |
|
254 |
+ ncores = len(learner.client) |
|
255 |
+ elif isinstance(learner.client, distributed.Client): |
|
256 |
+ ncores = sum(learner.client.ncores().values()) |
|
257 |
+ elif learner.client is None: |
|
258 |
+ ncores = os.cpu_count() |
|
259 |
+ else: |
|
260 |
+ raise NotImplementedError('Blabla') |
|
205 | 261 |
|
206 |
-async def any_complete(futures): |
|
207 |
- total = tornado.concurrent.Future() |
|
208 |
- for f in futures: |
|
209 |
- f.add_done_callback(lambda f: total.set_result(None) |
|
210 |
- if not total.done() else None) |
|
211 |
- await total |
|
212 |
- return [f for f in futures if f.done()] |
|
262 |
+ return run_asyncio(learner.func, learner.executor, learner, ncores=ncores, |
|
263 |
+ goal=lambda learner: learner.loss() < 0.1) |
|
213 | 264 |
|
214 | 265 |
|
215 |
-async def run(f, executor, learner, goal, ncores=multiprocessing.cpu_count()): |
|
266 |
+class LearnerMixin: |
|
267 |
+ |
|
268 |
+ def __init__(self, func, *, client=None, goal=None, ioloop=None, **learner_kwargs): |
|
269 |
+ self.ioloop = ioloop if ioloop else asyncio.get_event_loop() |
|
270 |
+ self.executor = ensure_async_executor(client, self.ioloop) # wraps in `run_in_executor` if concurrent.futures.Executor compatible |
|
271 |
+ self.client = client |
|
272 |
+ self.func = func |
|
273 |
+ self.task = None |
|
274 |
+ super().__init__(**learner_kwargs) |
|
275 |
+ |
|
276 |
+ def start(self): |
|
277 |
+ self.task = self.ioloop.create_task(runner(self)) |
|
278 |
+ |
|
279 |
+ def cancel(self): |
|
280 |
+ if self.task: |
|
281 |
+ return self.task.cancel() |
|
282 |
+ else: |
|
283 |
+ return False |
|
284 |
+ |
|
285 |
+ |
|
286 |
+class Learner1D(LearnerMixin, _Learner1D): |
|
287 |
+ |
|
288 |
+ def plot(self, data=None): |
|
289 |
+ "Plot another learner" |
|
290 |
+ if data is None: |
|
291 |
+ data = self.data |
|
292 |
+ xy = [(k, v) for k, v in sorted(data.items()) if v is not None] |
|
293 |
+ if not xy: |
|
294 |
+ return hv.Scatter([])[-1.1:1.1, -1.1:1.1] |
|
295 |
+ x, y = np.array(xy, dtype=float).T |
|
296 |
+ return hv.Scatter((x, y))[-1.1:1.1, -1.1:1.1] |
|
297 |
+ |
|
298 |
+ |
|
299 |
+async def run_asyncio(f, executor, learner, goal, |
|
300 |
+ ncores=os.cpu_count()): |
|
216 | 301 |
xs = dict() |
217 | 302 |
done = [None] * ncores |
218 | 303 |
|
... | ... |
@@ -224,8 +309,7 @@ async def run(f, executor, learner, goal, ncores=multiprocessing.cpu_count()): |
224 | 309 |
|
225 | 310 |
# Collect and results and add them to the learner |
226 | 311 |
futures = list(xs.keys()) |
227 |
- await any_complete(futures) |
|
228 |
- done = [fut for fut in futures if fut.done()] |
|
312 |
+ done, _ = await asyncio.wait(futures, return_when=asyncio.FIRST_COMPLETED) |
|
229 | 313 |
for fut in done: |
230 | 314 |
x = xs.pop(fut) |
231 | 315 |
# Need to explicitly await the future (even though we know the |
... | ... |
@@ -234,7 +318,8 @@ async def run(f, executor, learner, goal, ncores=multiprocessing.cpu_count()): |
234 | 318 |
y = await fut |
235 | 319 |
learner.add_point(x, y) |
236 | 320 |
|
237 |
- # cancel any outstanding tasks |
|
238 |
- for fut in xs.keys(): |
|
239 |
- fut.cancel() |
|
240 | 321 |
learner.remove_unfinished() |
322 |
+ # cancel any outstanding tasks |
|
323 |
+ cancelled = all(fut.cancel() for fut in xs.keys()) |
|
324 |
+ if not cancelled: |
|
325 |
+ raise RuntimeError('Some futures remain uncancelled') |