... | ... |
@@ -390,7 +390,7 @@ class IntegratorLearner(BaseLearner): |
390 | 390 |
|
391 | 391 |
def tell(self, point, value): |
392 | 392 |
if point not in self.x_mapping: |
393 |
- raise ValueError("Point {} doesn't belong to any interval".format(point)) |
|
393 |
+ raise ValueError(f"Point {point} doesn't belong to any interval") |
|
394 | 394 |
self.done_points[point] = value |
395 | 395 |
self.pending_points.discard(point) |
396 | 396 |
|
... | ... |
@@ -751,4 +751,4 @@ def _get_ncores(ex): |
751 | 751 |
ex.bootup() # wait until all workers are up and running |
752 | 752 |
return ex._pool.size # not public API! |
753 | 753 |
else: |
754 |
- raise TypeError("Cannot get number of cores for {}".format(ex.__class__)) |
|
754 |
+ raise TypeError(f"Cannot get number of cores for {ex.__class__}") |
... | ... |
@@ -75,7 +75,7 @@ def generate_random_parametrization(f): |
75 | 75 |
_, *params = inspect.signature(f).parameters.items() |
76 | 76 |
if any(not callable(v.annotation) for (p, v) in params): |
77 | 77 |
raise TypeError( |
78 |
- "All parameters to {} must be annotated with functions.".format(f.__name__) |
|
78 |
+ f"All parameters to {f.__name__} must be annotated with functions." |
|
79 | 79 |
) |
80 | 80 |
realization = {p: v.annotation() for (p, v) in params} |
81 | 81 |
return ft.partial(f, **realization) |