...
|
...
|
@@ -264,19 +264,14 @@ class Learner1D(BaseLearner):
|
264
|
264
|
missing_bounds = [b for b in self.bounds if b not in self.data
|
265
|
265
|
and b not in self.pending_points]
|
266
|
266
|
|
267
|
|
- if len(missing_bounds) == 2:
|
268
|
|
- # First time
|
|
267
|
+ if missing_bounds:
|
269
|
268
|
loss_improvements = [np.inf] * n
|
270
|
|
- points = np.linspace(*self.bounds, n).tolist()
|
271
|
|
- elif len(missing_bounds) == 1:
|
272
|
|
- loss_improvements = [np.inf] * n
|
273
|
|
- points = np.linspace(*self.bounds, n + 1).tolist()
|
274
|
|
- if missing_bounds[0] == self.bounds[1]:
|
275
|
|
- # Second time, if we previously returned just self.bounds[0]
|
276
|
|
- points = points[1:]
|
277
|
|
- else:
|
278
|
|
- # Rare case in which self.bounds[1] is present before self.bounds[1]
|
279
|
|
- points = points[:1]
|
|
269
|
+ points = np.linspace(*self.bounds, n + 2 - len(missing_bounds)).tolist()
|
|
270
|
+ if len(missing_bounds) == 1:
|
|
271
|
+ # If we previously returned just self.bounds[0] we exclude that point.
|
|
272
|
+ # In the rare case in which self.bounds[1] is present before self.bounds[1]
|
|
273
|
+ # we exclude that point.
|
|
274
|
+ points = points[1:] if missing_bounds[0] == self.bounds[1] else points[:-1]
|
280
|
275
|
else:
|
281
|
276
|
def xs(x_left, x_right, n):
|
282
|
277
|
if n == 1:
|
...
|
...
|
@@ -311,7 +306,6 @@ class Learner1D(BaseLearner):
|
311
|
306
|
|
312
|
307
|
return points, loss_improvements
|
313
|
308
|
|
314
|
|
-
|
315
|
309
|
def plot(self):
|
316
|
310
|
hv = ensure_holoviews()
|
317
|
311
|
if not self.data:
|