... | ... |
@@ -14,7 +14,7 @@ Tutorial `~adaptive.AverageLearner` |
14 | 14 |
:hide-code: |
15 | 15 |
|
16 | 16 |
import adaptive |
17 |
- adaptive.notebook_extension(_inline_js=False) |
|
17 |
+ adaptive.notebook_extension() |
|
18 | 18 |
|
19 | 19 |
The next type of learner averages a function until the uncertainty in |
20 | 20 |
the average meets some condition. |
... | ... |
@@ -10,8 +10,6 @@ Tutorial `~adaptive.AverageLearner` |
10 | 10 |
The complete source code of this tutorial can be found in |
11 | 11 |
:jupyter-download:notebook:`tutorial.AverageLearner` |
12 | 12 |
|
13 |
-.. thebe-button:: Run the code live inside the documentation! |
|
14 |
- |
|
15 | 13 |
.. jupyter-execute:: |
16 | 14 |
:hide-code: |
17 | 15 |
|
... | ... |
@@ -10,6 +10,8 @@ Tutorial `~adaptive.AverageLearner` |
10 | 10 |
The complete source code of this tutorial can be found in |
11 | 11 |
:jupyter-download:notebook:`tutorial.AverageLearner` |
12 | 12 |
|
13 |
+.. thebe-button:: Run the code live inside the documentation! |
|
14 |
+ |
|
13 | 15 |
.. jupyter-execute:: |
14 | 16 |
:hide-code: |
15 | 17 |
|
... | ... |
@@ -14,7 +14,7 @@ Tutorial `~adaptive.AverageLearner` |
14 | 14 |
:hide-code: |
15 | 15 |
|
16 | 16 |
import adaptive |
17 |
- adaptive.notebook_extension() |
|
17 |
+ adaptive.notebook_extension(_inline_js=False) |
|
18 | 18 |
|
19 | 19 |
The next type of learner averages a function until the uncertainty in |
20 | 20 |
the average meets some condition. |
... | ... |
@@ -40,7 +40,8 @@ implementation the seed parameter can be ignored by the function). |
40 | 40 |
.. jupyter-execute:: |
41 | 41 |
|
42 | 42 |
learner = adaptive.AverageLearner(g, atol=None, rtol=0.01) |
43 |
- runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 2) |
|
43 |
+ # `loss < 1` means that we reached the `rtol` or `atol` |
|
44 |
+ runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 1) |
|
44 | 45 |
|
45 | 46 |
.. jupyter-execute:: |
46 | 47 |
:hide-code: |
... | ... |
@@ -8,11 +8,10 @@ Tutorial `~adaptive.AverageLearner` |
8 | 8 |
|
9 | 9 |
.. seealso:: |
10 | 10 |
The complete source code of this tutorial can be found in |
11 |
- :jupyter-download:notebook:`AverageLearner` |
|
11 |
+ :jupyter-download:notebook:`tutorial.AverageLearner` |
|
12 | 12 |
|
13 |
-.. execute:: |
|
13 |
+.. jupyter-execute:: |
|
14 | 14 |
:hide-code: |
15 |
- :new-notebook: AverageLearner |
|
16 | 15 |
|
17 | 16 |
import adaptive |
18 | 17 |
adaptive.notebook_extension() |
... | ... |
@@ -25,7 +24,7 @@ the learner must formally take a single parameter, which should be used |
25 | 24 |
like a “seed” for the (pseudo-) random variable (although in the current |
26 | 25 |
implementation the seed parameter can be ignored by the function). |
27 | 26 |
|
28 |
-.. execute:: |
|
27 |
+.. jupyter-execute:: |
|
29 | 28 |
|
30 | 29 |
def g(n): |
31 | 30 |
import random |
... | ... |
@@ -38,20 +37,20 @@ implementation the seed parameter can be ignored by the function). |
38 | 37 |
random.setstate(state) |
39 | 38 |
return val |
40 | 39 |
|
41 |
-.. execute:: |
|
40 |
+.. jupyter-execute:: |
|
42 | 41 |
|
43 | 42 |
learner = adaptive.AverageLearner(g, atol=None, rtol=0.01) |
44 | 43 |
runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 2) |
45 | 44 |
|
46 |
-.. execute:: |
|
45 |
+.. jupyter-execute:: |
|
47 | 46 |
:hide-code: |
48 | 47 |
|
49 | 48 |
await runner.task # This is not needed in a notebook environment! |
50 | 49 |
|
51 |
-.. execute:: |
|
50 |
+.. jupyter-execute:: |
|
52 | 51 |
|
53 | 52 |
runner.live_info() |
54 | 53 |
|
55 |
-.. execute:: |
|
54 |
+.. jupyter-execute:: |
|
56 | 55 |
|
57 | 56 |
runner.live_plot(update_interval=0.1) |
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,57 @@ |
1 |
+Tutorial `~adaptive.AverageLearner` |
|
2 |
+----------------------------------- |
|
3 |
+ |
|
4 |
+.. note:: |
|
5 |
+ Because this documentation consists of static html, the ``live_plot`` |
|
6 |
+ and ``live_info`` widget is not live. Download the notebook |
|
7 |
+ in order to see the real behaviour. |
|
8 |
+ |
|
9 |
+.. seealso:: |
|
10 |
+ The complete source code of this tutorial can be found in |
|
11 |
+ :jupyter-download:notebook:`AverageLearner` |
|
12 |
+ |
|
13 |
+.. execute:: |
|
14 |
+ :hide-code: |
|
15 |
+ :new-notebook: AverageLearner |
|
16 |
+ |
|
17 |
+ import adaptive |
|
18 |
+ adaptive.notebook_extension() |
|
19 |
+ |
|
20 |
+The next type of learner averages a function until the uncertainty in |
|
21 |
+the average meets some condition. |
|
22 |
+ |
|
23 |
+This is useful for sampling a random variable. The function passed to |
|
24 |
+the learner must formally take a single parameter, which should be used |
|
25 |
+like a “seed” for the (pseudo-) random variable (although in the current |
|
26 |
+implementation the seed parameter can be ignored by the function). |
|
27 |
+ |
|
28 |
+.. execute:: |
|
29 |
+ |
|
30 |
+ def g(n): |
|
31 |
+ import random |
|
32 |
+ from time import sleep |
|
33 |
+ sleep(random.random() / 1000) |
|
34 |
+ # Properly save and restore the RNG state |
|
35 |
+ state = random.getstate() |
|
36 |
+ random.seed(n) |
|
37 |
+ val = random.gauss(0.5, 1) |
|
38 |
+ random.setstate(state) |
|
39 |
+ return val |
|
40 |
+ |
|
41 |
+.. execute:: |
|
42 |
+ |
|
43 |
+ learner = adaptive.AverageLearner(g, atol=None, rtol=0.01) |
|
44 |
+ runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 2) |
|
45 |
+ |
|
46 |
+.. execute:: |
|
47 |
+ :hide-code: |
|
48 |
+ |
|
49 |
+ await runner.task # This is not needed in a notebook environment! |
|
50 |
+ |
|
51 |
+.. execute:: |
|
52 |
+ |
|
53 |
+ runner.live_info() |
|
54 |
+ |
|
55 |
+.. execute:: |
|
56 |
+ |
|
57 |
+ runner.live_plot(update_interval=0.1) |