833ee21b |
from functools import reduce
|
0a4b3d01 |
from hypothesis import given
import hypothesis.strategies as st
import hypothesis.extra.numpy as hnp
import numpy as np
import pytest
import qsim.gate
|
92976613 |
# -- Strategies for generating values --
|
0a4b3d01 |
n_qubits = st.shared(st.integers(min_value=1, max_value=6))
|
92976613 |
|
25f28b4f |
# Choose which qubits from 'n_qubits' to operate on with a gate that
# operates on 'gate_size' qubits
def select_n_qubits(gate_size):
def _strat(n_qubits):
assert n_qubits >= gate_size
possible_qubits = st.integers(0, n_qubits - 1)
return st.lists(possible_qubits, gate_size, gate_size, unique=True).map(tuple)
return _strat
|
92976613 |
valid_complex = st.complex_numbers(allow_infinity=False, allow_nan=False)
|
0a4b3d01 |
phases = st.floats(
min_value=0, max_value=2 * np.pi, allow_nan=False, allow_infinity=False
)
|
92976613 |
def unitary(n_qubits):
size = 1 << n_qubits
return (
hnp.arrays(complex, (size, size), valid_complex)
.map(lambda a: np.linalg.qr(a)[0])
.filter(lambda u: np.all(np.isfinite(u)))
)
|
6ab61e72 |
def ket(n_qubits):
size = 1 << n_qubits
return (
hnp.arrays(complex, (size,), valid_complex)
.filter(lambda v: np.linalg.norm(v) > 0) # vectors must be normalizable
.map(lambda v: v / np.linalg.norm(v))
)
|
92976613 |
single_qubit_gates = unitary(1)
two_qubit_gates = unitary(2)
n_qubit_gates = n_qubits.flatmap(unitary)
|
ac29c84c |
# Projectors on the single qubit computational basis
project_zero = np.array([[1, 0], [0, 0]])
project_one = np.array([[0, 0], [0, 1]])
|
833ee21b |
def product_gate(single_qubit_gates):
# We reverse so that 'single_qubit_gates' can be indexed by the qubit
# identifier; e.g. qubit #0 is actually the least-significant qubit
return reduce(np.kron, reversed(single_qubit_gates))
|
92976613 |
# -- Tests --
|
0a4b3d01 |
@given(n_qubits, n_qubit_gates)
def test_n_qubits(n, gate):
assert qsim.gate.n_qubits(gate) == n
@given(n_qubit_gates)
def test_n_qubits_invalid(gate):
# Not a numpy array
with pytest.raises(ValueError):
qsim.gate.n_qubits(list(map(list, gate)))
# Not complex
with pytest.raises(ValueError):
qsim.gate.n_qubits(gate.real)
# Not square
with pytest.raises(ValueError):
qsim.gate.n_qubits(gate[:-2])
# Not size 2**n, n > 0
with pytest.raises(ValueError):
qsim.gate.n_qubits(gate[:-1, :-1])
# Not unitary
nonunitary_part = np.zeros_like(gate)
nonunitary_part[0, -1] = 1j
with pytest.raises(ValueError):
qsim.gate.n_qubits(gate + nonunitary_part)
@given(n_qubits, n_qubit_gates)
def test_controlled(n, gate):
|
27fc87e5 |
nq = 1 << n
|
0a4b3d01 |
controlled_gate = qsim.gate.controlled(gate)
assert controlled_gate.shape[0] == 2 * nq
assert np.all(controlled_gate[:nq, :nq] == np.identity(nq))
assert np.all(controlled_gate[nq:, nq:] == gate)
@given(phases)
def test_phase_gate_inverse(phi):
assert np.allclose(
qsim.gate.phase_shift(phi) @ qsim.gate.phase_shift(-phi), np.identity(2)
)
@given(phases, st.integers())
def test_phase_gate_periodic(phi, n):
atol = np.finfo(complex).resolution * abs(n)
assert np.allclose(
qsim.gate.phase_shift(phi),
qsim.gate.phase_shift(phi + 2 * np.pi * n),
atol=atol,
)
@given(single_qubit_gates)
def test_id(gate):
assert np.all(qsim.gate.id @ gate == gate)
assert np.all(gate @ qsim.gate.id == gate)
def test_pauli_gates_are_involutary():
pauli_gates = [qsim.gate.x, qsim.gate.y, qsim.gate.z]
assert np.all(qsim.gate.x == qsim.gate.not_)
for gate in pauli_gates:
assert np.all(gate @ gate == qsim.gate.id)
assert np.all(-1j * qsim.gate.x @ qsim.gate.y @ qsim.gate.z == qsim.gate.id)
def test_sqrt_not():
assert np.all(qsim.gate.sqrt_not @ qsim.gate.sqrt_not == qsim.gate.not_)
def test_deutch():
assert np.allclose(qsim.gate.deutsch(np.pi / 2), qsim.gate.toffoli)
def test_swap():
assert np.all(qsim.gate.swap @ qsim.gate.swap == np.identity(4))
|
e47cb2be |
@given(single_qubit_gates, n_qubits.flatmap(ket), n_qubits.flatmap(select_n_qubits(1)))
def test_applying_single_gates(gate, state, selected):
qubit, = selected
n_qubits = state.shape[0].bit_length() - 1
parts = [np.identity(2)] * n_qubits
parts[qubit] = gate
big_gate = product_gate(parts)
should_be = big_gate @ state
state = qsim.gate.apply(gate, [qubit], state)
assert np.allclose(state, should_be)
@given(
single_qubit_gates,
n_qubits.filter(lambda n: n > 1).flatmap(ket),
n_qubits.filter(lambda n: n > 1).flatmap(select_n_qubits(2)),
)
def test_applying_controlled_single_qubit_gates(gate, state, selected):
control, qubit = selected
n_qubits = state.shape[0].bit_length() - 1
# When control qubit is |0⟩ the controlled gate acts like the identity on the other qubit
parts_zero = [np.identity(2)] * n_qubits
parts_zero[control] = project_zero
parts_zero[qubit] = np.identity(2)
# When control qubit is |1⟩ the controlled gate acts like the original gate on the other qubit
parts_one = [np.identity(2)] * n_qubits
parts_one[control] = project_one
parts_one[qubit] = gate
# The total controlled gate is then the sum of these 2 product gates
big_gate = product_gate(parts_zero) + product_gate(parts_one)
should_be = big_gate @ state
state = qsim.gate.apply(qsim.gate.controlled(gate), [control, qubit], state)
assert np.allclose(state, should_be)
|