tests/test_gate.py
833ee21b
 from functools import reduce
 
0a4b3d01
 from hypothesis import given
 import hypothesis.strategies as st
 import hypothesis.extra.numpy as hnp
 import numpy as np
 import pytest
 
 import qsim.gate
 
 
92976613
 # -- Strategies for generating values --
0a4b3d01
 
 
 n_qubits = st.shared(st.integers(min_value=1, max_value=6))
92976613
 
 
25f28b4f
 # Choose which qubits from 'n_qubits' to operate on with a gate that
 # operates on 'gate_size' qubits
 def select_n_qubits(gate_size):
     def _strat(n_qubits):
         assert n_qubits >= gate_size
         possible_qubits = st.integers(0, n_qubits - 1)
c5e74fd6
         return st.lists(
             possible_qubits, min_size=gate_size, max_size=gate_size, unique=True
         ).map(tuple)
25f28b4f
 
     return _strat
 
 
92976613
 valid_complex = st.complex_numbers(allow_infinity=False, allow_nan=False)
0a4b3d01
 phases = st.floats(
     min_value=0, max_value=2 * np.pi, allow_nan=False, allow_infinity=False
 )
92976613
 
 
 def unitary(n_qubits):
     size = 1 << n_qubits
     return (
c5e74fd6
         hnp.arrays(complex, (size, size), elements=valid_complex)
92976613
         .map(lambda a: np.linalg.qr(a)[0])
         .filter(lambda u: np.all(np.isfinite(u)))
     )
 
 
6ab61e72
 def ket(n_qubits):
     size = 1 << n_qubits
     return (
c5e74fd6
         hnp.arrays(complex, (size,), elements=valid_complex)
6ab61e72
         .filter(lambda v: np.linalg.norm(v) > 0)  # vectors must be normalizable
         .map(lambda v: v / np.linalg.norm(v))
     )
 
 
92976613
 single_qubit_gates = unitary(1)
 two_qubit_gates = unitary(2)
 n_qubit_gates = n_qubits.flatmap(unitary)
 
ac29c84c
 # Projectors on the single qubit computational basis
 project_zero = np.array([[1, 0], [0, 0]])
 project_one = np.array([[0, 0], [0, 1]])
 
 
833ee21b
 def product_gate(single_qubit_gates):
     # We reverse so that 'single_qubit_gates' can be indexed by the qubit
     # identifier; e.g. qubit #0 is actually the least-significant qubit
     return reduce(np.kron, reversed(single_qubit_gates))
 
 
92976613
 # -- Tests --
0a4b3d01
 
 
 @given(n_qubits, n_qubit_gates)
 def test_n_qubits(n, gate):
     assert qsim.gate.n_qubits(gate) == n
 
 
 @given(n_qubit_gates)
 def test_n_qubits_invalid(gate):
     # Not a numpy array
     with pytest.raises(ValueError):
         qsim.gate.n_qubits(list(map(list, gate)))
     # Not complex
     with pytest.raises(ValueError):
         qsim.gate.n_qubits(gate.real)
     # Not square
     with pytest.raises(ValueError):
         qsim.gate.n_qubits(gate[:-2])
     # Not size 2**n, n > 0
     with pytest.raises(ValueError):
         qsim.gate.n_qubits(gate[:-1, :-1])
     # Not unitary
     nonunitary_part = np.zeros_like(gate)
     nonunitary_part[0, -1] = 1j
     with pytest.raises(ValueError):
         qsim.gate.n_qubits(gate + nonunitary_part)
 
 
 @given(n_qubits, n_qubit_gates)
 def test_controlled(n, gate):
27fc87e5
     nq = 1 << n
0a4b3d01
     controlled_gate = qsim.gate.controlled(gate)
     assert controlled_gate.shape[0] == 2 * nq
     assert np.all(controlled_gate[:nq, :nq] == np.identity(nq))
     assert np.all(controlled_gate[nq:, nq:] == gate)
 
 
 @given(phases)
 def test_phase_gate_inverse(phi):
     assert np.allclose(
         qsim.gate.phase_shift(phi) @ qsim.gate.phase_shift(-phi), np.identity(2)
     )
 
 
 @given(phases, st.integers())
 def test_phase_gate_periodic(phi, n):
     atol = np.finfo(complex).resolution * abs(n)
     assert np.allclose(
         qsim.gate.phase_shift(phi),
         qsim.gate.phase_shift(phi + 2 * np.pi * n),
         atol=atol,
     )
 
 
 @given(single_qubit_gates)
 def test_id(gate):
     assert np.all(qsim.gate.id @ gate == gate)
     assert np.all(gate @ qsim.gate.id == gate)
 
 
 def test_pauli_gates_are_involutary():
     pauli_gates = [qsim.gate.x, qsim.gate.y, qsim.gate.z]
     assert np.all(qsim.gate.x == qsim.gate.not_)
     for gate in pauli_gates:
         assert np.all(gate @ gate == qsim.gate.id)
     assert np.all(-1j * qsim.gate.x @ qsim.gate.y @ qsim.gate.z == qsim.gate.id)
 
 
 def test_sqrt_not():
     assert np.all(qsim.gate.sqrt_not @ qsim.gate.sqrt_not == qsim.gate.not_)
 
 
 def test_deutch():
     assert np.allclose(qsim.gate.deutsch(np.pi / 2), qsim.gate.toffoli)
 
 
 def test_swap():
     assert np.all(qsim.gate.swap @ qsim.gate.swap == np.identity(4))
e47cb2be
 
 
 @given(single_qubit_gates, n_qubits.flatmap(ket), n_qubits.flatmap(select_n_qubits(1)))
 def test_applying_single_gates(gate, state, selected):
c5e74fd6
     (qubit,) = selected
e47cb2be
     n_qubits = state.shape[0].bit_length() - 1
     parts = [np.identity(2)] * n_qubits
     parts[qubit] = gate
     big_gate = product_gate(parts)
 
     should_be = big_gate @ state
     state = qsim.gate.apply(gate, [qubit], state)
 
     assert np.allclose(state, should_be)
 
 
 @given(
     single_qubit_gates,
     n_qubits.filter(lambda n: n > 1).flatmap(ket),
     n_qubits.filter(lambda n: n > 1).flatmap(select_n_qubits(2)),
 )
 def test_applying_controlled_single_qubit_gates(gate, state, selected):
     control, qubit = selected
     n_qubits = state.shape[0].bit_length() - 1
     # When control qubit is |0⟩ the controlled gate acts like the identity on the other qubit
     parts_zero = [np.identity(2)] * n_qubits
     parts_zero[control] = project_zero
     parts_zero[qubit] = np.identity(2)
     # When control qubit is |1⟩ the controlled gate acts like the original gate on the other qubit
     parts_one = [np.identity(2)] * n_qubits
     parts_one[control] = project_one
     parts_one[qubit] = gate
     # The total controlled gate is then the sum of these 2 product gates
     big_gate = product_gate(parts_zero) + product_gate(parts_one)
 
     should_be = big_gate @ state
     state = qsim.gate.apply(qsim.gate.controlled(gate), [control, qubit], state)
 
     assert np.allclose(state, should_be)