This will be necessary for defining measurements also
Joseph Weston authored on 15/09/2021 17:22:20... | ... |
@@ -6,6 +6,8 @@ matrix written in the computational basis. |
6 | 6 |
|
7 | 7 |
import numpy as np |
8 | 8 |
|
9 |
+from . import operator |
|
10 |
+ |
|
9 | 11 |
__all__ = [ |
10 | 12 |
"apply", |
11 | 13 |
"n_qubits", |
... | ... |
@@ -34,7 +36,8 @@ def apply(gate, qubits, state): |
34 | 36 |
|
35 | 37 |
Parameters |
36 | 38 |
---------- |
37 |
- gate : ndarray[complex] |
|
39 |
+ gate: ndarray[complex] |
|
40 |
+ The gate to apply. |
|
38 | 41 |
qubits : sequence of int |
39 | 42 |
The qubits on which to act. Qubit 0 is the least significant qubit. |
40 | 43 |
state : ndarray[complex] |
... | ... |
@@ -43,62 +46,16 @@ def apply(gate, qubits, state): |
43 | 46 |
------- |
44 | 47 |
new_state : ndarray[complex] |
45 | 48 |
""" |
46 |
- n_gate_qubits = gate.shape[0].bit_length() - 1 |
|
47 |
- n_state_qubits = state.shape[0].bit_length() - 1 |
|
48 |
- assert len(qubits) == n_gate_qubits |
|
49 |
- |
|
50 |
- # We can view an n-qubit gate as a 2*n-tensor (n contravariant and n contravariant |
|
51 |
- # indices) and an n-qubit state as an n-tensor (contravariant indices) |
|
52 |
- # with each axis having length 2 (the state space of a single qubit). |
|
53 |
- gate = gate.reshape((2,) * 2 * n_gate_qubits) |
|
54 |
- state = state.reshape((2,) * n_state_qubits) |
|
55 |
- |
|
56 |
- # Our qubits are labeled from least significant to most significant, i.e. our |
|
57 |
- # computational basis (for e.g. 2 qubits) is ordered like |00⟩, |01⟩, |10⟩, |11⟩. |
|
58 |
- # We represent the state as a tensor in *row-major* order; this means that the |
|
59 |
- # axis ordering is *backwards* compared to the qubit ordering (the least significant |
|
60 |
- # qubit corresponds to the *last* axis in the tensor etc.) |
|
61 |
- qubit_axes = tuple(n_state_qubits - 1 - np.asarray(qubits)) |
|
62 |
- |
|
63 |
- # Applying the gate to the state vector is then the tensor product over the appropriate axes |
|
64 |
- axes = (np.arange(n_gate_qubits, 2 * n_gate_qubits), qubit_axes) |
|
65 |
- new_state = np.tensordot(gate, state, axes=axes) |
|
66 |
- |
|
67 |
- # tensordot effectively re-orders the qubits such that the qubits we operated |
|
68 |
- # on are in the most-significant positions (i.e. their axes come first). We |
|
69 |
- # thus need to transpose the axes to place them back into their original positions. |
|
70 |
- untouched_axes = tuple( |
|
71 |
- idx for idx in range(n_state_qubits) if idx not in qubit_axes |
|
72 |
- ) |
|
73 |
- inverse_permutation = np.argsort(qubit_axes + untouched_axes) |
|
74 |
- return np.transpose(new_state, inverse_permutation).reshape(-1) |
|
49 |
+ _check_valid_gate(gate) |
|
50 |
+ return operator.apply(gate, qubits, state) |
|
51 |
+ |
|
52 |
+ |
|
53 |
+n_qubits = operator.n_qubits |
|
75 | 54 |
|
76 | 55 |
|
77 | 56 |
def _check_valid_gate(gate): |
78 |
- if not ( |
|
79 |
- # is an array |
|
80 |
- isinstance(gate, np.ndarray) |
|
81 |
- # is complex |
|
82 |
- and np.issubdtype(gate.dtype, np.complex128) |
|
83 |
- # is square |
|
84 |
- and gate.shape[0] == gate.shape[1] |
|
85 |
- # has size 2**n, n > 1 |
|
86 |
- and np.log2(gate.shape[0]).is_integer() |
|
87 |
- and gate.shape[0].bit_length() > 1 |
|
88 |
- # is unitary |
|
89 |
- and np.allclose(gate @ gate.conjugate().transpose(), np.identity(gate.shape[0])) |
|
90 |
- ): |
|
91 |
- raise ValueError("Gate is not valid") |
|
92 |
- |
|
93 |
- |
|
94 |
-def n_qubits(gate): |
|
95 |
- """Return the number of qubits that a gate acts on. |
|
96 |
- |
|
97 |
- Raises ValueError if 'gate' does not have a shape that is |
|
98 |
- an integer power of 2. |
|
99 |
- """ |
|
100 |
- _check_valid_gate(gate) |
|
101 |
- return gate.shape[0].bit_length() - 1 |
|
57 |
+ if not operator.is_unitary(gate): |
|
58 |
+ raise ValueError("Gate is invalid") |
|
102 | 59 |
|
103 | 60 |
|
104 | 61 |
def controlled(gate): |
105 | 62 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,126 @@ |
1 |
+import numpy as np |
|
2 |
+ |
|
3 |
+from .state import num_qubits |
|
4 |
+ |
|
5 |
+__all__ = ["apply", "is_hermitian", "is_unitary", "is_valid", "n_qubits"] |
|
6 |
+ |
|
7 |
+ |
|
8 |
+def apply(op, qubits, state): |
|
9 |
+ """Apply an operator to the specified qubits of a state |
|
10 |
+ |
|
11 |
+ Parameters |
|
12 |
+ ---------- |
|
13 |
+ op: ndarray[complex] |
|
14 |
+ The operator to apply. |
|
15 |
+ qubits : sequence of int |
|
16 |
+ The qubits on which to act. Qubit 0 is the least significant qubit. |
|
17 |
+ state : ndarray[complex] |
|
18 |
+ |
|
19 |
+ Returns |
|
20 |
+ ------- |
|
21 |
+ new_state : ndarray[complex] |
|
22 |
+ """ |
|
23 |
+ _check_apply(op, qubits, state) |
|
24 |
+ |
|
25 |
+ n_op_qubits = n_qubits(op) |
|
26 |
+ n_state_qubits = num_qubits(state) |
|
27 |
+ |
|
28 |
+ # We can view an n-qubit op as a 2*n-tensor (n contravariant and n contravariant |
|
29 |
+ # indices) and an n-qubit state as an n-tensor (contravariant indices) |
|
30 |
+ # with each axis having length 2 (the state space of a single qubit). |
|
31 |
+ op = op.reshape((2,) * 2 * n_op_qubits) |
|
32 |
+ state = state.reshape((2,) * n_state_qubits) |
|
33 |
+ |
|
34 |
+ # Our qubits are labeled from least significant to most significant, i.e. our |
|
35 |
+ # computational basis (for e.g. 2 qubits) is ordered like |00⟩, |01⟩, |10⟩, |11⟩. |
|
36 |
+ # We represent the state as a tensor in *row-major* order; this means that the |
|
37 |
+ # axis ordering is *backwards* compared to the qubit ordering (the least significant |
|
38 |
+ # qubit corresponds to the *last* axis in the tensor etc.) |
|
39 |
+ qubit_axes = tuple(n_state_qubits - 1 - np.asarray(qubits)) |
|
40 |
+ |
|
41 |
+ # Applying the op to the state vector is then the tensor product over the appropriate axes |
|
42 |
+ axes = (np.arange(n_op_qubits, 2 * n_op_qubits), qubit_axes) |
|
43 |
+ new_state = np.tensordot(op, state, axes=axes) |
|
44 |
+ |
|
45 |
+ # tensordot effectively re-orders the qubits such that the qubits we operated |
|
46 |
+ # on are in the most-significant positions (i.e. their axes come first). We |
|
47 |
+ # thus need to transpose the axes to place them back into their original positions. |
|
48 |
+ untouched_axes = tuple( |
|
49 |
+ idx for idx in range(n_state_qubits) if idx not in qubit_axes |
|
50 |
+ ) |
|
51 |
+ inverse_permutation = np.argsort(qubit_axes + untouched_axes) |
|
52 |
+ return np.transpose(new_state, inverse_permutation).reshape(-1) |
|
53 |
+ |
|
54 |
+ |
|
55 |
+def _all_distinct(elements): |
|
56 |
+ if not elements: |
|
57 |
+ return True |
|
58 |
+ elements = iter(elements) |
|
59 |
+ fst = next(elements) |
|
60 |
+ return all(fst != x for x in elements) |
|
61 |
+ |
|
62 |
+ |
|
63 |
+def _check_apply(op, qubits, state): |
|
64 |
+ if not _all_distinct(qubits): |
|
65 |
+ raise ValueError("Cannot apply an operator to repeated qubits.") |
|
66 |
+ |
|
67 |
+ n_op_qubits = n_qubits(op) |
|
68 |
+ if n_op_qubits != len(qubits): |
|
69 |
+ raise ValueError( |
|
70 |
+ f"Cannot apply an {n_op_qubits}-qubit operator to {len(qubits)} qubits." |
|
71 |
+ ) |
|
72 |
+ |
|
73 |
+ n_state_qubits = num_qubits(state) |
|
74 |
+ |
|
75 |
+ if n_op_qubits > n_state_qubits: |
|
76 |
+ raise ValueError( |
|
77 |
+ f"Cannot apply an {n_op_qubits}-qubit operator " |
|
78 |
+ f"to an {n_state_qubits}-qubit state." |
|
79 |
+ ) |
|
80 |
+ |
|
81 |
+ invalid_qubits = [q for q in qubits if q >= n_state_qubits] |
|
82 |
+ if invalid_qubits: |
|
83 |
+ raise ValueError( |
|
84 |
+ f"Cannot apply operator to qubits {invalid_qubits} " |
|
85 |
+ f"of an {n_state_qubits}-qubit state." |
|
86 |
+ ) |
|
87 |
+ |
|
88 |
+ |
|
89 |
+def is_hermitian(op: np.ndarray) -> bool: |
|
90 |
+ """Return True if and only if 'op' is a valid Hermitian operator.""" |
|
91 |
+ return is_valid(op) and np.allclose(op, op.conj().T) |
|
92 |
+ |
|
93 |
+ |
|
94 |
+def is_unitary(op: np.ndarray) -> bool: |
|
95 |
+ """Return True if and only if 'op' is a valid unitary operator.""" |
|
96 |
+ return is_valid(op) and np.allclose(op @ op.conj().T, np.identity(op.shape[0])) |
|
97 |
+ |
|
98 |
+ |
|
99 |
+def is_valid(op: np.ndarray) -> bool: |
|
100 |
+ """Return True if and only if 'op' is a valid operator.""" |
|
101 |
+ return ( |
|
102 |
+ # is an array |
|
103 |
+ isinstance(op, np.ndarray) |
|
104 |
+ # is complex |
|
105 |
+ and np.issubdtype(op.dtype, np.complex128) |
|
106 |
+ # is square |
|
107 |
+ and op.shape[0] == op.shape[1] |
|
108 |
+ # has size 2**n, n > 1 |
|
109 |
+ and np.log2(op.shape[0]).is_integer() |
|
110 |
+ and op.shape[0].bit_length() > 1 |
|
111 |
+ ) |
|
112 |
+ |
|
113 |
+ |
|
114 |
+def _check_valid_operator(op): |
|
115 |
+ if not is_valid(op): |
|
116 |
+ raise ValueError("Operator is invalid") |
|
117 |
+ |
|
118 |
+ |
|
119 |
+def n_qubits(op): |
|
120 |
+ """Return the number of qubits that the operator acts on. |
|
121 |
+ |
|
122 |
+ Raises ValueError if 'o' does not have a shape that is |
|
123 |
+ an integer power of 2. |
|
124 |
+ """ |
|
125 |
+ _check_valid_operator(op) |
|
126 |
+ return op.shape[0].bit_length() - 1 |
... | ... |
@@ -28,7 +28,9 @@ def select_n_qubits(gate_size): |
28 | 28 |
return _strat |
29 | 29 |
|
30 | 30 |
|
31 |
-valid_complex = st.complex_numbers(allow_infinity=False, allow_nan=False) |
|
31 |
+valid_complex = st.complex_numbers( |
|
32 |
+ max_magnitude=1e10, allow_infinity=False, allow_nan=False |
|
33 |
+) |
|
32 | 34 |
phases = st.floats( |
33 | 35 |
min_value=0, max_value=2 * np.pi, allow_nan=False, allow_infinity=False |
34 | 36 |
) |
... | ... |
@@ -89,11 +91,6 @@ def test_n_qubits_invalid(gate): |
89 | 91 |
# Not size 2**n, n > 0 |
90 | 92 |
with pytest.raises(ValueError): |
91 | 93 |
qsim.gate.n_qubits(gate[:-1, :-1]) |
92 |
- # Not unitary |
|
93 |
- nonunitary_part = np.zeros_like(gate) |
|
94 |
- nonunitary_part[0, -1] = 1j |
|
95 |
- with pytest.raises(ValueError): |
|
96 |
- qsim.gate.n_qubits(gate + nonunitary_part) |
|
97 | 94 |
|
98 | 95 |
|
99 | 96 |
@given(n_qubits, n_qubit_gates) |